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ABSTRACT 
 

Computational modeling of mechanical behavior in a solidifying body is of great 
potential benefit to understand and improve material processes such as foundry 
shape casting, continuous casting and welding.  Understanding the history of shape 
and stress during solidification processes is important for process development and 
can help in the prediction and prevention of  problems such as cracks and 
depressions on the initial stage of continuous casting.  This thesis is directed 
towards realizing this opportunity by developing and evaluating computational 
procedures for stress modeling of processes with solidification.  An efficient 
coupled finite element thermo-mechanical model is applied to investigate thermal-
mechanical behavior of the steel shell during the initial stages of solidification at 
the meniscus, focusing on the mechanisms of  surface depression and surface crack 
formation. 

To represent deformation phenomena properly  over the wide range of temperatures 
encountered in solidification processes, it is accepted that unified elastic-
viscoplastic models are better than classic creep and plasticity theory.  However, 
these models are difficult to be implemented in finite element analysis because the 
constitutive differential equations for rate-dependent unified elastic-viscoplastic 
models are both highly nonlinear and mathematical "stiff".  Three  numerical time-
integration schemes are evaluated to integrate such constitutive models.  They 
include the explicit forward Euler scheme, the implicit backward Euler scheme and 
the alternating implicit / explicit scheme based on the operator-splitting technique.  
The latter two methods involve transforming the tensor algorithm constitutive 
models for isotropic materials   into  two scalar equations to solve at each spatial 
integration point for two unknowns: the stress magnitude and the inelastic strain 
magnitude.  Several constitutive algorithms are examined to solve this nonlinear 
two equations system.  This is  similar to solving a uni-axial problem with 
prescribed strain rate.  These "local" algorithms include the successive substitution 
method, the forward gradient method, the Newton-Raphson method, the bounded 
Newton method and Nemat-Nasser's explicit prediction method.  The performance 
of these methods are compared using a computationally-demanding solidification 
test problem with known solution.  Results indicate that a formulation comprised of 
the alternating implicit-explicit time integration scheme and the bounded Newton 
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method at the local level calculation is the most robust, accurate and efficient 
method.  

A coupled transient finite element model based on the fixed-grid implementation of 
this formulation is developed to simulate temperature, shape, and stress 
development in a solidifying steel shell during initial stage of continuous casting.  
The model includes  the effects of temperature-dependent properties, thermal 
shrinkage, phase transformations and creep, using an elastic-viscoplastic 
constitutive equation for low carbon steel.  This  model is validated through 
comparison with several benchmark problems, chosen to represent phenomena 
present during stress analysis of solidifying metals.  The model is then used to 
investigate four different assumptions for simplifying the simulation of large, 
unconstrained castings into two dimensions.   

This  verified model is applied to predict the distorted shape of a vertical section 
through the solidifying shell, during a sudden fluctuation in liquid level at the 
meniscus.  The results show that thermal stress causes the exposed portion of the 
thin shell to bend towards the liquid, when there is a severe, sudden drop in liquid 
level.  In addition, the axial temperature gradient creates high transverse stresses.  
The subsequent rise in liquid level increases the bending.  These results illustrate an 
important mechanism contributing to the formation of transverse surface 
depressions and short longitudinal surface cracks associated with severe liquid level 
fluctuations.  
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Chapter 1 

Introduction 

1.1 Background 

 Many manufacturing and fabrication processes such as foundry shape casting, 

continuous casting and welding involve solidification phenomena.  Understanding the 

history of shape and stress during solidification is important for process development and 

can help in the prediction and prevention of detrimental residual stress, distortion, crack 

formation and even porosity formation.  With the rapid development of computer 

hardware and computational techniques in recent years, numerical modeling offers the 

potential to realistically investigate these complex processes.  However, owing to the 

great computational complexity of the problem, many previous stress analysis have 

oversimplified several important phenomena.  one of those is realistic constitutive models 

to characterize mechanical behavior.  To properly represent deformation phenomena such 

as  strain hardening and rate-dependent creep-plasticity interactions over a wide range of 

temperatures encountered in elevated-temperature processes,  it is accepted that unified 

elastic-viscoplastic models are better than classic creep and plasticity theory [1, 2].  

However, there is a considerable challenge to utilize these models due to the lack of  

efficient and robust methods for numerical implementations of them in large-scale finite 

element analysis.    

 Most of the surface defects in continuous casting are suspected to initiate during 

the initial stages of solidification in the mold, especially near the meniscus.   These 

defects include deep oscillation marks, surface depressions, longitudinal and transverse 

surface cracks.  Although a body of empirical knowledge and evidence exists, the exact 

mechanisms for many of these problems are still unclear. 
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1.2  Objectives 

 The first objective of this research  is to develop and evaluate new computational 

procedures for stress modeling of process with solidification, emphasis on the numerical 

implementation of the unified constitutive models for fixed-grid mechanical analysis of 

solidification.  The second objective is to develop an efficient finite-element model to 

investigate thermal-mechanical behavior of the steel shell during the initial stages of 

solidification, focusing on the mechanisms of surface depression and surface crack 

formation. 

1.3 Organization  

 The rest of this thesis is organized as follows.   

 In chapter 2,  the issues for modeling thermal stress generation with solidification 

are reviewed.  A  finite-element fixed-grid model for modeling mechanical behavior with 

solidification is presented.  This model features a robust numerical scheme to handle the 

highly-nonlinear unified constitutive equations employed to describe high-temperature 

mechanical behavior and appropriate two-dimensional assumptions to properly simplify 

the three-dimensional system.  Several techniques are proposed to handle liquid elements 

in the context of the fixed-grid method.  This model is validated by a benchmark test 

problem for thermal-mechanical analysis of solidification with a known analytical 

solution.  Several computational issues such as element type, mesh and time step size, 

and two-dimensional approximation are discussed through numerical experiments.  

 In chapter 3, the numerical implementations of the unified rate-dependent 

constitutive models in large-scale analysis are discussed.  Three numerical time-

integration schemes are employed to integrate the constitutive equations, including the 

explicit forward Euler scheme, the implicit backward Euler scheme and the alternating 
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implicit-explicit scheme based on the operator-splitting technique. Several constitutive 

algorithms are examined for the local iteration at material points.  These "local" 

algorithms include the successive substitution method, the forward gradient method, the 

Newton-Raphson method, the bounded Newton method and the Nemat-Nasser's explicit 

prediction method.  The performance of all combinations of methods were compared 

using the computational-demanding solidification test problem presented in chapter 2.   

 In chapter 4, the best method found in chapter 3 and described in chapter 2  is 

implemented into a two-dimensional, transient, finite-element model to simulate 

temperature, shape, and stress development in the steel shell, during the initial stages of 

solidification in the mold.  The model is applied to predict the distorted shape of a vertical 

section through the shell, during a sudden fluctuation in liquid level at the meniscus.  The 

results illustrate an important mechanism contributing to the formation of transverse 

surface depressions and short longitudinal surface cracks associated with severe liquid 

level fluctuations. 

 In chapter 5, conclusions  are drawn from this research. 

1.4  Reference 
 
1. P. Kozlowski, B.G. Thomas, J. Azzi and H. Wang, Simple Constitutive Equations 
for Steel at High Temperature,  Metallurgical Transactions A, vol. 23 (March) (1992) 
903-918. 
 
2. A.K. Miller, Unified Constitutive Equations for Creep and Plasticity, (Elsevier 
Applied Science Publishers Ltd, Essex, United Kingdom, 1987). 
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Chapter 2

Fixed-Grid Finite-Element Model of Mechanical Behavior of Solidifying Metals

 Computer modeling of mechanical behavior in processes involving solidification

requires treatment of many complex phenomena which present several numerical difficulties.

This chapter reviews the available methods and presents an accurate, robust and efficient

model of mechanical behavior involving solidification along with its finite element

implementation.   The model includes a stable and efficient method to integrate the unified

elastic-visco-plastic equations used to describe the high-temperature constitutive behavior.

The mechanical interaction between the solid phase and the liquid phase is incorporated

through internal constraint conditions.  The proposed model is validated through comparison

with several benchmark problems, chosen to represent phenomena present during stress

analysis of solidifying metals.  The model is then used to investigate four different

assumptions for simplifying the simulation of large, unconstrained castings into two

dimensions.  The model is ready to simulate the initial solidification of the steel shell in

continuous casting processes and other important phenomena.

2.1  Background

Computational modeling of mechanical behavior in a solidifying body is of great

potential benefit to understand and improve material processes such as foundry shape casting,

continuous casting and welding.  Understanding the history of shape and stress during

solidification processes is important for process development and can help in the prediction

and prevention of detrimental residual stress, distortion, crack formation and even porosity

formation.  With the rapid development of computer hardware and computational techniques

in recent years, numerical modeling offers the potential to realistically investigate these

complex processes.  A few analytical solutions of stress development in a solidifying body

have been developed by Weiner and Boley  [1],  Tien and Kaump [2].  Although these
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analyses oversimplify the complex physical phenomena associated with solidification, they are

useful in providing benchmark problems for verification of the numerical models.

The first task in  mechanical modeling of thermal processes such as solidification is

accurate prediction of the transient temperature history, which controls the thermal strains

responsible for most of the stresses.  The major computational feature of modeling heat

transfer with solidification is the treatment of the latent heat which is evolved at the moving

solid-liquid interface.  Many different numerical methods have been developed to handle this.

These include fixed-grid methods, reviewed by Voller et al [3], front-tracking methods [4],

deforming finite-element mesh methods [5] and arbitrary Lagrangian-Eulerian methods [6].

Comparatively, the mathematical modeling of stress generation in solidification

processes has received less attention.  One reason for this is the number of computational

difficulties encountered when modeling the complex phenomena which govern the mechanical

behavior.  Figure 1 shows how these phenomena interact to couple together the important

variables affecting mechanical analysis (stress and strain) during solidification, which include

fluid flow, heat transfer, and microstructure.  Two-way coupling between these four separate

types of analysis greatly escalates the computational difficulties.  For example, while

temperature controls stress, stress in turn affects temperature in two ways.  Firstly, the

changing degree of contact between the mold and the casting affects the interface heat transfer,

which can control temperature development.  Secondly, the energy dissipated during plastic

deformation is important to temperature in large-strain processes, such as squeeze casting,

rolling, and forging.  Fortunately, the latter effect contributes little to the temperature

distribution during small-strain solidification processes, so is often neglected.  Further

coupling caused by several other phenomena are included in Figure 2.1.
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Figure 2.1 Coupled phenomena in solidification analysis
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This complex interaction of phenomena creates computational problems.  Additional

problems arise due to the moving (dynamically changing) solid-liquid interface, complex

thermal and mechanical loading, highly nonlinear rate-dependent constitutive relationships,

heterogeneous non-isotropic temperature-dependent material properties, solid-state phase

transformations, microstructural effects such as segregation, interaction and relative motion

between the casting and the mold, and the inherent three-dimensional nature of the process.

The development of computational methods to handle these phenomena constitutes important

fields of current research, which are reviewed in the next sections as background for the

present study.

2.1.1   Incorporating coupled effects such as fluid flow

To model mechanical behavior during solidification, an accurate temperature field is

needed to calculate thermal strain and materials properties at every time step.  Convective heat

transfer in the liquid can affect the analysis of temperature.  Some attempts to simultaneously

model the coupled thermal-fluid-mechanical system have been made, although this is very

computationally expensive and difficult.  For example, Kelly et al [7] transferred data between

two commercial finite element packages to calculate coupled velocity / temperature (FIDAP)

and thermal stress (ABAQUS) to simulate the continuous casting of round billets.  The

easiest method to account for convective heat transfer is simply to increase the liquid

conductivity.  When the solidification heat transfer has little influence on the fluid flow

pattern, a more accurate method is to uncouple the fluid flow and thermal-stress calculations.

The convective heat transfer effect can be calculated by a separate fluid flow model [8], whose

results are used as an internal heat source or internal boundary condition in a heat conduction

model [9].    This method is appropriate when a coupled thermal-mechanical analysis is

necessary to account for the effect of the changing shape of the casting and mold on heat

transfer across the interfacial gap between them.  Mechanical behavior can greatly influence

heat transfer in some processes, such as continuous casting of steel, by changing the size of
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the low-conductivity air gap [10, 11], or changing the pressure-related contact thermal

conductivity [12].

In other processes, such as sand casting, thermal-mechanical coupling across the

interfacial gap is not important.  In these cases, it may be more appropriate to couple the fluid

flow and heat transfer calculations into a single model.  For example, Boehmer et al [13]

developed a thermal-mechanical model to analyze mechanical behavior in a continuous casting

machine by using an in-house finite-difference code for heat transfer and the commercial

finite-element package ADINA for stress analysis.  Fjaer and Mo [14] used a similar method

to model the direct chill casting of aluminum billets.  Although this framework can allow

realistic incorporation of fluid flow effects, these models ignore the effect of the mechanical

calculation on the gap heat transfer.

2.1.2  Solution strategies for coupled fields

The computational efficiency of modeling transient nonlinear systems with coupled

fields depends greatly on the time integration algorithm and the manner of iterating between

the coupled fields.  Two main strategies can be used for time-stepping with coupled fields.

The monolithic, or simultaneous solution scheme employs the same time-stepping algorithm

to the fully-coupled system.  The staggered scheme applies different time-stepping algorithms

to the different parts of the coupled system [15, 16].

The simultaneous-iteration approach and nested-iteration approach are used to solve

nonlinear coupled systems [16, 17].  Different combinations of time integration scheme and

iteration manner for transient nonlinear coupled fields have their own advantages and the best

algorithm depends on the specific problem.  For fully-coupled thermo-mechanical analysis

with solidification, all of the schemes in previous models [7, 9, 13, 18, 19] use a staggered

integration algorithm with a nested iteration technique, which is easy to implement with two

separated single-field analysis codes.
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2.1.3   Numerical methods for stress analysis during solidification

Various numerical methods have been used for modeling stress in a solidification

process.  Some previous researchers, including Cross [20] and Hattel et al [21] have

employed control-volume finite-difference methods to simulate three-dimensional

thermoelastic stresses in die casting.  Heinlein and Mukherjee [22] presented a boundary

integral equation method to analyze mechanical behavior for the one dimensional

solidification of an aluminum bar.  However, most previous numerical models [7, 14, 23-28]

are based on the finite-element method, due to its flexibility for efficiently handling arbitrary

geometric shapes, as well as complex material properties and other nonlinear phenomena.

2.1.4   Constitutive models

Realistic models of constitutive behavior and materials properties are the foundation of

successful modeling of mechanical behavior.  During solidification and subsequent cooling

processes, evolution of the microstructure causes a large variation in the mechanical

properties.  The constitutive model should reproduce experimental mechanical behavior

measured over the range of process conditions of interest.  Typical experiments include

tension tests, creep tests, stress relaxation tests and cyclic tests.  At high temperatures, time-

dependent processes (creep) are very important, so the inelastic component of strain is highly

rate-dependent

For solidification processes, various  constitutive models have been used.  These

include an elastic model by Manesh [29], an elastic / perfectly plastic model by Weiner and

Boley [1] , an elastic-plastic model by Tszeng et al [24], an elastic-hyperbolic type creep

model by Heinlein et al [22] and Zabaras et al [4], a separated elastic-plastic-creep model is

used by Kristiansson [23] and Boehmer et al [13], a simple visco-plastic model by Dalin [30],

a modified Perzyna’s visco-plastic model by Inoue et al [25, 31] and Williams et al [26], a

unified elastic-viscoplastic model by Fjaer and Mo [14] and Hannart et al [19], and internal
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variable models by Mo and Holm [32], Smelser and Richmond [28], and Bamman  [33].  The

latter unified models are growing in popularity due to their physically-based,

phenomenological approach [34-36].

Unified models differ from classic plasticity - creep models in that there is no explicit

yield condition or loading/unloading criteria.  Unified models treat creep and plasticity as a

unified "inelastic strain", whose instantaneous rate of change depends on the current stress,

temperature, and “structure”.  Structure is represented by one or more scalar or tensor state-

variables, which evolve with time, and can include phenomena such as rate of phase

transformation.  Traditional elastic-viscoplastic models are obtained when inelastic strain is

selected as the structure parameter.  The kinematic hardening or Bauschinger effect, which can

be described with a structure parameter in several unified models [34, 35], has been proven

important to mechanical behavior with solidification by Mo et al [32] and Bammann et al [33].

Although unified models can produce more realistic mechanical behavior, there is a lack of

high-temperature experimental data, such as that needed to characterize the Bauschinger effect

for the range of alloys, strain-rates, and stress-ranges of interest.  An additional problem is

numerical instability, as these constitutive equations are extremely nonlinear, or “stiff”,

meaning that a small change in one state variable may produce large changes in others [35, 37,

38].

2.1.5   Numerical implementation of unified constitutive equations into finite element models

Numerical integration and related finite-element implementation of constitutive

equations is another important issue of current interest, particularly for the highly non-linear

unified models.  A good method has both numerical stability and computational efficiency.

Many schemes [39-52] have been proposed to integrate the stress rate equations.  These

schemes treat the total strain rate as an implicit term during solution of the global equilibrium

equations and boundary conditions.  Inelastic strain rate is treated as either explicit or implicit,

depending on the time integration scheme.  With an explicit forward Euler time-integration
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scheme, a very small time step size may be needed to satisfy stability requirements [39, 40].

Several semi-implicit forward-gradient methods have been developed to overcome the stability

restriction of explicit integration of the inelastic strain rate [36, 43-46].  These methods are

based on a truncated Taylor-series approximation to linearize the inelastic strain rate and avoid

iteration.  They have the drawback of less accuracy over the knee of the stress-strain curve due

to their simple approximation.

On the other hand, the implicit treatment of inelastic strain rate requires intensive

computational effort to iteratively solve the nonlinear global system of equations [39, 41-43].

Two well-known  methods to accomplish this are the tangent stiffness method and the initial

strain method [39, 47, 53].  The initial strain method has the advantage of maintaining a

constant global stiffness matrix during iterations, although its convergence rate is at best

linear.  In the tangent stiffness method, the global stiffness matrix must be reformed at every

iteration, but the convergence rate may be faster.  The quadratic convergence rate of the

Newton-Raphson scheme is achieved only when the "consistent tangent modulus" is used

[47, 48, 54].  These methods require a local algorithm to integrate the inelastic strain rate to

update the stress at each material point or integration point.  This local algorithm has a great

influence on both computational efficiency and stability.  Convergence problems have been

reported when simple iteration with successive substitution is used as the local algorithm [40].

For implicit integration of their unified constitutive equation for solidification, Fjaer and Mo

used the initial strain method at the global level and a forward gradient method at the local

level [14].

2.1.6  Treatment of the liquid phase

Incompressible liquid is subject to large shear deformation without generating stress.

However, it can transmit hydrostatic pressure to the solidifying shell.  When gravity acting on

the liquid is significant, this pressure can be the dominant mechanical load, responsible for
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creep bulging in large castings.  The stress state is always continuous across the solid-liquid

interface [22, 55].  Several approaches can be taken to model this behavior.

One method is to numerically “strip away” the liquid elements according to the

results of the heat transfer calculation.   Liquid elements are simply not assembled into the

stiffness matrix [7, 13, 14].  Pressure boundary conditions are easily applied to the new

surfaces of the remaining solid domain.  When the liquid is exposed to ambient pressure, the

boundary condition is simply hydrostatic pressure due to gravity, which increases in

proportion to distance below the liquid surface.  This method has been applied successfully to

steady continuous casting[7, 13, 14], but has numerical disadvantages when the solidification

front moves with time.  Zabaras et al [4] proposed a front-tracking thermomechanical finite-

element model in which remeshing is necessary at every time step.

 Alternatively, a time-invariant mesh or “fixed-grid” method [19, 23-27, 56, 57] can be

applied by altering the properties of the liquid with temperature.  Besides easier numerical

treatment of arbitrary movement of the solidifying interface in existing stress codes, avoiding

remeshing has the major advantage of robust handling of complex interactions between the

thermal and the mechanical behavior, such as gap heat transfer and local remelting [58].

Moreover, modeling the liquid domain may be of interest.  Recent work on crack initiation

criteria [59] indicates that a critical level of tensile strain in the presence of a critical liquid

fraction range is responsible for hot-tear crack formation.  To model this effect requires

realistic simulation of strain in the mushy zone of alloy solidification.  Methods to accomplish

this will be discussed in further detail later in this paper.

2.1.7  Phase Transformation

During solidification and subsequent cooling processes, complex coupling may exist

between heat transfer, mechanical behavior and solid-state phase transformations [12, 60].

Heat transfer is greatly influenced by the release or absorption of latent heat during phase
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transformation.  Phase transformation affects stress generation in two ways.  Firstly, it creates

additional strain due to the density change.  This is readily incorporated into a unified thermal

strain [27, 61].  Secondly, phase transformation creates additional inelastic strain.  This effect,

known as “phase transformation plasticity” [62-64], may have an important influence on the

mechanical analysis.  In turn, phase transformation kinetics are strongly affected by both

temperature and internal stress.  This may require a separate model of the microstructure,

including phenomena such as the critical undercooling for nucleation [65]. The effect of

stress is seldom considered because the microscopic mechanisms are not fully understood.

Several coupled thermal-mechanical models [7, 9, 18] have been developed for casting

analysis, which include the effects of phase transformation.  Das et al [66] shown that the

interaction of stress and phase transformation has a significant effect on the residual stress for

the gas metal arc welding process.

2.1.8   Interaction with the mold

Interaction between the casting and the mold affects both the loading on the exterior of

the solidifying shell for stress analysis and the size of the interfacial gap for heat transfer

analysis.  This requires the stress analysis to be fully coupled with the thermal analysis.

Contact phenomena are involved in solidification processes through mechanical

interaction between the shell and the mold.  Strong nonlinearity is created because, in general,

the contact boundary is not known a priori.   This can be mathematically described as an

inequality constraint [67, 68]. Three main approaches for numerical treatment of contact in the

context of finite-element methods include the Langrange multiplier method [69-71], penalty

method [67, 72] and augmented-Lagrangian method [17, 73, 74].  However, converged

solutions are computationally expensive to obtain for complex contact problems.  For

example, Boehmer et al [13] reported that the analysis of the mechanical behavior of the
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solidified shell in a continuous casting machine with mold constraint  requires ten times the

computation time of the analysis without mold constraint.

If the behavior of the contact is known a priori, it is possible to develop special

algorithms to improve the convergence rate.  For the analysis of casting processes, several

algorithms [9, 57, 75, 76]  take advantage of the known behavior of air gap formation between

the shell and the mold.  Recently, a formulation [77, 78] based on the microscopic physical

behavior of the surface has been proposed for thermomechanical contact analysis.  This

formulation is reported to be easy to implement into existing finite element codes using

nonlinear spring elements.

2.1.9   Relative motion between the casting and the mold

The analysis of processes such as continuous casting, squeeze casting, and rolling

present the additional computational challenge of large relative motion between the processing

materials and the mold or “tools”.  As explained by Zienkiewicz [79], a Lagrangian

description is usually adopted for transient processes, while an Eulerian description is often

used for steady state problems.  An Eulerian description with a “fluid approach” fixes the

mesh at spatial points (in the “laboratory” frame of reference).  Material behavior is modeled

as a rate-dependent non-Newtonian fluid, which travels through the model domain.  Velocity

is selected as the primary field variable and the convective terms appear in the governing

equations.  Special updating schemes are required for the convective terms.  This added

complexity creates numerical difficulties, particularly when incorporating the effects of creep

[79] or when modeling a free surface [30].  Several models use this approach  [7, 14, 30, 80,

81].

On the other hand, in a Lagrangian description with a “solid approach”, the

computational mesh moves with the material points.  Material behavior is described with

Hooke’s generalized law, the primary field variable is displacement or incremental
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displacement, and variables with path and history dependencies are easy to update.  The

shortcoming of this approach is that continuous remeshing is necessary if there is large

relative motion.  This may be computationally-intensive unless the casting and mold move as

rigid bodies along paths which are known a priori.

Other methods have been developed to overcome the disadvantages of pure

Lagrangian and pure Eulerian descriptions when modeling contact problems with large

deformation and large relative motions.  For small-strain processes such as continuous

casting, most models [9, 23, 24, 57, 82] mathematically follow a slice through the solidifying

shell down through the mold, taking advantage of the small deformation rate relative to the

casting speed.  These models may be called arbitrary Lagrangian-Eulerian descriptions [83-

88].  Several investigations employ this method,  where the grid point velocity in the

undiscretized third direction is fixed at the casting speed and a fully-Lagrangian frame is used

in the slice plane.     

2.1.10  Two-dimensional models

Although solidification, like any process, is inherently three-dimensional, the

tremendous complexities make it desirable to use a two-dimensional model for computational

efficiency.  To model stress with solidification, several different two-dimensional models have

been used, including axisymmetric [4, 7, 10, 14, 28, 31, 89], shell [90, 91], plane stress [26, 56,

92], plane strain [13, 24, 25, 57], generalized plane strain and plane deformation behavior [23,

93, 94].  The axisymmetric condition is naturally employed whenever there is radial symmetry

in the geometry, boundary conditions, and properties.  Accuracy of the other five two-

dimensional approximations should be judged by comparison with three-dimensional analysis

or direct experimental verification.  Wikander et al [94] examined three different two-

dimensional finite-element models of welding and compared the numerical and experimental

residual stress and strain results.  Plane deformation was found to best approximate a D-

shaped cross-section.
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For numerical implementation of the generalized-plane-strain condition, extra primary

variables must be solved in the undiscretized direction.  Either the direct solver [95] or the

iteration method [96-98] can be used to solve the mixed variables in the resulting system of

equations.  The best method to use depends on the bandwidth of the stiffness matrix and the

number of global freedom degrees and will be investigated as part of this study.

2.1.11 The present study

The above discussion has shown that the modeling of stress generation with

solidification many complex interactions between phenomena and involves many

computational difficulties.  One of the greatest computational challenges remaining is the

development of realistic models of entire casting processes, including all important

phenomena.  Once a model is developed, it should be verified with known solutions that test

each of its features.  As part of the verification stage, important computational aspects such as

element type, mesh density, time step size, methods for liquid domain, two-dimensional stress

state should be carefully examined.  Most previous stress models have not been thoroughly

validated.  Moreover, due to the complexity of problem and lack of robust algorithms to

handle the complex constitutive models, most previous stress models are limited to two-

dimensional analysis, use unrealistic constitutive models.  There is a great incentive to develop

and implement efficient computational algorithms into validated stress models of solidification

processes.

This chapter presents a new model for the simulation of mechanical behavior in

solidifying metals.  It is based on the fixed-grid finite element method, and includes an

efficient scheme for finite-element implementation of the unified elastic-viscoplastic

constitutive equations.  Several different two-dimensional versions of the model have been

tested, using typical problems involved in mechanical behavior with solidification.  Several

essential computational issues are evaluated.  A detailed comparison study of different

methods for finite-element implementation of the unified constitutive equations will be
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discussed in future papers.  The model presented here is being developed into a fully-coupled

thermo-mechanical model of the continuous casting process for steel slabs, including other

important phenomena such as turbulent multi-phase flow and mold distortion.

2.2   Heat transfer / solidification  modeling

Assuming that the energy generated by mechanical work is insignificant in processes

with solidification, the energy balance equation can be written as:

ρcp
DT
Dt  = (K T, i), i + Q , (2.1)

where ρ, cp, K, Q are the temperature-dependent density, specific heat, thermal conductivity

and internal heat source density respectively.  
DT
Dt   is the time-derivative in the Lagrangian

reference frame.  In a spatially-fixed Eulerian frame,

DT
Dt   = T, t + Vi T, i       , i,j = 1,2,3 (summation on i) (2.2)

where V is velocity of the spatial point.

In general, the boundary conditions on the entire surface of the domain may be

classified into three portions:

T = T
_

on ST   , (2.3)

(-K T, i)ni = q
_

on Sq   , (2.4)

(-KT, i)ni  = h (T - Ta) on Sh   , (2.5)

in which T
_

 is a fixed temperature on the boundary portion ST,  q
_
 is the prescribed heat flux at

the boundary  Sq and h is the heat transfer coefficient on the remaining boundary portion Sh

with corresponding ambient temperature, Ta.  n is the unit normal vector of the surface of the

domain.
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Many other papers deal with treatment of the above partial different equation and

boundary conditions to solve for the temperature field using the finite element method [99].

With fixed-grid techniques, the important non-linear effect of the latent heat of solidification

can be accounted for through several different methods, reviewed elsewhere [3, 100].

Since attention in this study is focused on the mechanical models of processes with

solidification, a simple analytical solution to this partial differential equation is used to

calculate thermal strain and temperature-dependent mechanical properties [1].

2.3  Mechanical model formulation

2.3.1  Constitutive equations

Assuming small strains, small displacements and small rotations, the total strain rate

tensor εεεε
....
 can be additively decomposed into components consisting of an elastic strain rate

tensor εεεε
.e, an inelastic strain rate tensor εεεε

.p  and a thermal strain rate tensor εεεε
.T,

εεεε
.
  =  εεεε

. e  +   εεεε
. p   +  εεεε

.T  . (2.6)

The inelastic strain rate includes the effects of both time-independent plasticity and time-

dependent creep.

 The stress tensor σσσσ is obtained from the generalized form of Hooke’s law,

σσσσ  = C :  εεεεe , (2.7)

in which C is a fourth-order isotropic elastic tensor with components :

Cijkl (T) = λ(T) δij δkl + µ(T) (δik δjl + δil δjk ) , (2.8)

where λ(T) and µ(T) are temperature-dependent Lame constants and δij are components of the

kronecker delta, δδδδ.  The corresponding rate form of the constitutive relation can be written as
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σσσσ
.
  = C : ( εεεε

....
  - εεεε

.T-  εεεε
.p ) + T

. ∂C
∂T : ( εεεε  -   εεεεT -   εεεεp ) . (2.9)

In the second term of the above equation, the changes in the elastic tensor caused by

temperature variation are seen to contribute to the stress rate.  Although this term is often

neglected, its effect is significant in solidification problems.  The formulation (2.7) - (2.9) is a

classical hyperelastic equation in the absence of inelastic deformation.

Thermal strain  εεεεT is defined as

εεεεT = [TLE(T) - TLE(T0)] δδδδ , (2.10)

in which the unified state function TLE, thermal linear expansion, accounts for the volume

changes caused by both temperature differences and phase transformations. T0 is reference

temperature, typically chosen to be the solidus temperature.  TLE can be found from the mass

density, ρ  as:

TLE(T) = √⎯
3

ρ(T0)

ρ(T)
     -  1.0 . (2.11)

In mixed phase regions, TLE can be found from a weighted average using the TLE curves

measured for each of the individual phases present, based on their volume fractions.  For

example, during the solidification of steel, liquid (l), delta ferrite (δ), austenite (γ), alpha ferrite,

(α), and iron carbide (Fe3C) may be present:

TLE = (%l) TLEl + (%δ) TLEδ + (%γ) TLEγ + (%α) TLEα + (%Fe3C) TLEFe3C , (2.12)

This formulation makes it easy to use a separate microstructure model to find the phase

fractions present at each time and location.  This microstructure model could simulate phase

transformation kinetics to account for non-equilibrium conditions, where the phases present

are not a direct function of temperature.  Alternatively, the simple microstructure model used
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here assumes equilibrium conditions, based on the phase diagram to calculate the phase

fractions.  Jablonka and Harste [101] provide a complete TLE function from the melting

temperature to room temperature for plain-carbon steels.

 Thermal strain rate εεεε
....T during time interval [t, t+∆t ]  is taken in a backward-difference

form of thermal strain as

εεεε
.T = 

[TLE(Tt+∆t) - TLE(Tt )]

∆t 
 δδδδ    .... (2.13)

Assuming associated plastic flow, the inelastic strain rate εεεε
.p given by the Prandtl-

Reuss relations [102] is

εεεε
.p = √⎯ 3

2  ε
_.

p N  . (2.14)

This treatment ignores spatial anisotropy due to the inherent directional properties of crystals

and their different orientation .  This is likely to be critical when modeling scale is on the

order of the grain size.  Thus this work is only good for macroscopic behavior relative to the

grain columnar.

In above equation (2.14),  N is the unit direction tensor of inelastic strain rate, which is

defined as:

N = √⎯ 3
2  

σσσσ’

σ
_

  , (2.15)

Here the deviatoric stress tensor σσσσ’, the Von-mises effective stress σ
_

,
  

and the equivalent

inelastic strain  ε
_

p  are defined by

σσσσ’ = σσσσ    − 
1
3 tr (σσσσ) δδδδ  , (2.16)

σ
_   

= √⎯⎯⎯3
2 σσσσ’.σσσσ’  , (2.17)
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and

 ε
_

p  = √⎯⎯⎯2
3 εεεεp.εεεεp , (2.18)

respectively.  The equivalent inelastic strain rate is a function of the current effective stress and

the structure parameter

ε
_.

p = f (σ
_

, s) , (2.19)

in which s represents a scalar structure parameter or “internal variable”.  Its evolution

equation takes the form

s
.  

= g (σ
_

, s)   . (2.20)

This single internal variable unified constitutive model is used to describe the

equivalent inelastic strain rate, which represents both time-dependent creep and time-

independent plasticity.  This approach is natural because creep strain is significant during

tensile tests at high temperature and cannot be distinguished from plastic strain.  Many

different models [14, 28, 103-105] employ the equivalent inelastic strain ε
_

p as the single

structure parameter s in a rate-dependent constitutive equation.  Equations (2.20) and (2.21)

generally are strongly-nonlinear ordinary differential equations and may be mathematical

"stiff" in some regions.  Special attention is required in their numerical integration.  During

solidification and other phase changes, the structure parameter may change suddenly,

according to the sudden change in microstructure.  When this occurs, the structure variable

should be reset to an appropriate initial value for the new phase.  Thus, for a strain-hardening

viscoplastic constitutive model, inelastic strain accumulated in the old phase (e.g., liquid

phase) should not contribute directly to material behavior in new phase range (e.g., solid

phase).  With this treatment, completely fictitious material behavior may be involved for

computational convenience in the liquid-phase region without necessarily creating inaccuracy
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in another.  In a later section, this idea is exploited to handle the liquid domain in the fixed-

grid method.

Knowing the values of all state variables (σσσσ, s) at time t, these variables are determined

at time t+∆t through integration of the evolution equations (2.6) and (2.20).  Thermal strain

rate is assumed to be a constant during [t, t+∆t] and is known from prior thermal analysis and

equation (2.13).  The proposed time integration scheme is based on an operator-splitting

technique which alternates between implicit and explicit forms of the total strain rate and

inelastic strain rate when integrating equation (2.6).  This scheme was used by Glowinski and

Talle [106] to integrate a viscoplastic model without the hardening effects.  The method

originated from the ADI scheme of Douglas and Rachford for transient heat conduction

problems [107].   Time integration is carried out in two steps.2.3.2  Time integration scheme

In the first “local” step, stress and inelastic strain rate are estimated through implicit

time integration at each material point, knowing the total strain rate at time t from the previous

time step:

σσσσ̂t+∆t = Ct+∆t  : [εεεεt - εεεεTt - εεεεpt + (εεεε
....
t  -  εεεε

.Tt+∆t -  εεεε
•̂ pt+∆t)∆t ] . (2.21)

In the second “global” step, stress and total strain rate are found through implicit

spatial integration using the finite element method, based on explicit time integration using the

inelastic strain rate from step 1:

σσσσt+∆t = Ct+∆t  : [εεεεt  -   εεεεTt -   εεεεpt  + (εεεε
....
t+∆t -  εεεε

....Tt+∆t - εεεε
•̂ pt+∆t )∆t ] . (2.22)

In these equations, ^ represents intermediate, estimated terms.

In the first step, total strain rates based on the known incremental displacement field

calculated in the previous time step are used to update the current stress and structure

parameters at each material point.  Equations (2.14 - 2.21) thus constitute a system of
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nonlinear equations with 15 unknowns (two tensors and three scalars) to find at every material

point of a three dimensional analysis.  This problem could be solved by the Newton-Raphson

method [106].  With so many unknowns, however, this would be very computationally

expensive.  Using a similar technique to that of Lush et al [47] and Zabaras et al [48], this

system of simultaneous equations was reduced to a pair of scalar equations with only two

unknowns, which are more easily solved.  Details of this solution procedure are given in the

next section.

In the second step, the inelastic strain rate is based on the estimate in the first step.

Thus, Eq.(2.22) can be regarded as a simple elastic constitutive equation with an initial strain

or initial stress.  The current total strain rate is found by solving the elastic constitutive

equation and the system equilibrium equations using a global numerical method for spatial

integration such as finite element method.

Compared with other implicit schemes [42, 45, 47, 108]  for finding the inelastic strain

rate, this  operator-splitting, numerical-integration scheme is more efficient because the global

system of equations is solved only once each time step.  Implicit integration of the inelastic

strain rate at each material point in the first step gives this scheme more stability than other

methods, such as the explicit scheme proposed by Zienkiewicz [39].

2.3.3  The constitutive algorithm (step 1)

As pointed out above, equation (2.21) must be integrated numerically at each material

point.  This method used to accomplish this is called the "constitutive" algorithm or the

"local" algorithm.

Substituting  equations (2.8), (2.14), (2.15) and (2.19) into equation (2.21), gives :

σσσσ̂t+∆t  = σσσσ*t+∆t - √⎯ 6 µt+∆tf(σ
_̂

t+∆t , ŝ t+∆t)∆t  N̂t+∆t , (2.23)

where
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σσσσ*t+∆t   = Ct+∆t   : [εεεεt  -   εεεεTt -   εεεεpt  + (εεεε
.
t  -  εεεε

....Tt+∆t  )∆t ] . (2.24)

Implicit integration of equation (2.20) requires the solution of:

s ^t+∆t = st+ g(σ
_̂

t+∆t, ŝ t+∆t)∆t    . (2.25)

By taking the deviatoric part of (2.23), substituting σσσσ’^t+∆t = √⎯ 2
3  σ

_̂
t+∆t   N̂t+∆t ,  gives:

[√⎯ 2
3  σ

_̂
t+∆t + √⎯ 6 µt+∆t f(σ

_̂
t+∆t , ŝ t+∆t)∆t ]  N̂t+∆t = σσσσ

*’
t+∆t , (2.26)

which means that  N̂t+∆t  and σσσσ*t+∆t  have same direction.  Thus,

 N̂t+∆t  =  √⎯ 3
2   

σσσσ*’t+∆t 

σ
_
* t+∆ t  

 , (2.27)

and

 σσσσ’̂t+∆t = 
 σ-̂ t+∆t

 σ- * t+∆ t 
σσσσ*’t+∆t . (2.28)

Combining (2.28) and (2.26) produces:

 σ
_̂

t+∆t  =  σ- *t+∆t - 3 µt+∆t f(σ
_̂

t+∆t , ŝ t+∆t) ∆t   , (2.29)

Equations (2.25) and (2.29) form a pair of nonlinear scalar equations with two unknowns

σ
_̂

t+∆t  and s ^t+∆t .

The constitutive algorithm of the present model proceeds as follows:

Step 1a. Calculate εεεε
....
t from the incremental displacement field at time t.

Step 1b.  Calculate σσσσ*t+∆t  using equation (2.24) .
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Step 1c.  Calculate the deviatoric part and the effective stress of σσσσ*t+∆t  using Eqs.

2.16, 2.17.

Step 1d.  Solve equations (2.25) and (2.29) simultaneously for σ
_̂

t+∆t  and ŝ t+∆ t

Step 1e.  Calculate σσσσ̂t+∆t  by:

σσσσ̂t+∆t  =  
 σ-̂ t+∆t

 σ- * t+∆ t 
σσσσ*’t+∆t  + 

1
3 tr ( σσσσ*t+∆t ) δδδδ     .

Step 1f.  Calculate  ε•
_

pt+∆t and εεεε•̂ pt+∆t using eqs. (2.19) and (2.14).

An iterative scheme is needed in step 1c because the two equations are usually very

nonlinear.  Several methods [45, 47, 48, 51] maybe used to do this.  In the present work, a

two-level Newton-Raphson method suggested by Lush et al [47] was selected, due to its

flexibility for a large class of functions f and g [48].

2.3.4   The boundary-value problem

For the quasi static process of interest, the equilibrium equations can be written as

σij,i  + bj = 0     in  V, (2.30)

in which inertia forces are neglected and bj  is a component of body forces.

The strain-displacement relation is

εij = 
1
2 ( ui,j +  uj,i )   in  V . (2.31)

The boundary conditions are

u = u-    on  Au , (2.32)

σσσσ    . n  = t-  on At (2.33)
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where V is the simulation volume region with surface Au and At , u
-   and  t-  are the prescribed

displacements and surface tractions respectively.

2.3.5  Finite-element  implementation (step 2)

Following the standard isoparametric finite element procedure [109], the element

coordinates and displacements can be approximated in terms of the corresponding nodal

quantities:

x = Σ Ni xi = [N]e{x}e  , (2.34)

u = Σ Ni ui = [N]e{u}e  , (2.35)

where i ranges from one to the number of nodes in element e and  Ni,  xi,  and ui are the shape

function, position and displacement at element node i respectively.   [N]e  is the shape function

matrix for the element e and {x}e,  {u}e  are the column vectors of  the components containing

the node coordinates and  displacements of element e respectively.

Substituting equations (2.35)  into the strain-displacement relation (2.31), the total

strain vector  {ε}e  with components {ε11, ε22, ε33, ε12, ε23, ε31} for element e, is expressed as:

{ε} e= [B]e{u}e, (2.36)

where [B]e is the standard strain-displacement matrix for element e defined by spatial-

differentiation of the shape functions.

Using the standard Galerkin's method [99], the governing equations and boundary

conditions (2.30) - (2.33) can be transformed into the following system of algebraic equations

at each node in the finite element domain:
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∑
e=1

ne
 ∫ve  ([B]e)T{σ}dV = ∑

e=1

ne
 ∫ve  ([N]e)TbdV  + ∑

e=1

ne
 ∫Ate( [N]e)T t-  dA  , (2.37)

in which ne is the total number of elements and the summation symbol represents the global

assembly operation. {σ} is a 6x1 column vector containing components of stress, {σ} =

{σ11, σ22, σ33, σ12, σ23, σ31}T.  The above finite element equation (2.37) must be satisfied at

every time in the simulation.  To solve Eqs. (2.37), the time integration scheme in Eq. (2.22)

and strain-displacement Eq. (2.36) are used to evaluate the time-dependent, nonlinear

constitutive equations: 

∑
e=1

ne
  ∫ve ([B]e)T [C] t+∆t [B]e dV{∆u}t+∆t =

∑
e=1

ne
 ∫ve ([B]e)T [C] t+∆t ({εεεε•̂ p }t+∆t + {εεεε

.
T}t+∆t  )∆tdV  - ∑

e=1

ne
 ∫ve ([B]e)T [C] t+∆t {εe}t dV +

 ∑
e=1

ne
 ∫ve  ([N]e)TbdV  + ∑

e=1

ne
 ∫Ate( [N]e)T t-  dA  . (2.38)

Here [C]t+∆t contains components of the 4th-order elastic tensor C at time t+∆t, and is a 6x6

matrix for three dimensions.  It should be pointed that {∆u}t+∆t contains incremental

displacements, while b and t- contain the total body force components and boundary traction

components respectively.  This mixed form in Eq. (2.38) avoids the phenomenon that

solutions gradually shift away from equilibrium, which occurs with purely incremental forms

[43].  In addition, this form allows easy implementation of moving internal boundary

conditions without special treatment [58].  Second-order Gaussian quadrature is used to

numerically integrate eqs. (2.38) [43], which are assembled into a set of linear equations with

a banded, symmetric coefficient matrix or "global stiffness matrix" on the left hand side.  This

system is solved for {∆u}t+∆t using the Cholesky method [110].  Next, {u}t+∆t are updated,

the current strain {ε}t+∆t  and stress {σ}t+∆t  are calculated by equations (2.36) and (2.22).

The inelastic strains {εp}t+∆t  needed for the calculations are taken from the previous solution
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of Eq. (2.21) at each numerical integration point using the procedure discussed in section

2.3.3.

2.3.6  Treatment of liquid elements

To avoid complicated remeshing procedures [4] , the present model uses a “fixed-

grid” approach.  The simulation domain includes both solid and liquid elements, so special

treatment is needed.  Three approaches were implemented and compared in the present work.

The first was to model liquid elements by simply altering the temperature-dependent

mechanical properties. Rearranging equation (2.7),

σij = - pδij  + 2µεe '
i j  , (2.39)

where p = -Kεe
kk  = -(λ + 2µ)εe

kk  . (2.40)

The bulk modulus K, Lame constants λ and µ are related to Young's modulus E and the

Poisson ratio ν by:

K = 
E

1−2ν
 , (2.41)

λ = 
Eν

(1+ν)(1−2ν)
  , (2.42)

µ =  E
2(1+ν)

  . (2.43)

The most popular method to treat liquid elements is to simply reduce E by several

orders of magnitude as temperature increases from the solidus to the liquidus temperature.

Being easily deformable (small µ) and compressible (small K) avoids any mechanical

influence of the liquid on the solid.  This is physically reasonable when modeling, for

example, 2-D generalized-plane strain sections through castings where the liquid outside the

section is exposed to ambient pressure p [9, 111].  To further model effect of hydrostatic
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pressure generation in the liquid on the solidifying shell, the bulk modulus in the liquid can be

maintained on the same order as that in the solid by appropriately increasing ν  to approach

0.5 (large K) simultaneously with the decrease in E [19, 24, 28, 112, 113].

With either implementation of this method, thermal strain and inelastic strain in the

liquid elements are set to zero, and non-physical elastic strains were produced.  These

generated huge non-physical stresses after the transition from liquid to solid, if the

temperature-dependency of the elastic constants was properly accounted for via the T
. ∂C
∂T εεεεe

term in Eq.(2.9). This problem could be avoided by neglecting this term, but the later behavior

of the solid was changed significantly.  The second problem with this method was numerical

ill-conditioning.  A singular stiffness matrix sometimes arose when Young's modulus in the

liquid elements was too small relative to that of the solid.

The second method to treat liquid in the present work was simply to reset the elastic

strain of all liquid elements to zero at the end of every time step.  This avoids both problems

of the previous method, but requires setting up cumbersome flags in the program.

A third method, which solves all of the above problems by avoiding drastic change of

the elastic constants altogether, is to allow increased inelastic strain in the liquid instead.  This

method was implemented in the present work by creating a viscoplastic constitutive relation

for the liquid phase in the form of a penalty function which generated inelastic strain in

proportion to effective stress in the liquid.  This avoids shear stress in the liquid, while

transmitting hydrostatic stress.  This method takes advantage of the robust algorithm for

handling inelastic strain presented earlier.

It should be pointed out that the elastic strain in the first two methods and inelastic

strain in the third method are treated as structure parameters which should be reset to their

initial values in the new phase (solid), after phase transformation has occurred.  The effect of

hydrostatic pressure in the liquid due to gravity was incorporated into the second and third
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methods in order to simulate continuous casting.  This was done by applying the pressure as

an internal constraint condition to appropriate nodes near the solid-liquid interface [9].

2.3.7  Two-dimensional models

Section (2.3.1)-(2.3.5) described a general three-dimensional computational

framework for modeling the mechanical behavior of systems with temperature and rate-

dependent material behavior.  However, it is of great interest to use reliable two-dimensional

models for computational efficiency.  Four different two-dimensional assumptions including

plane-stress, plane-strain, generalized-plane-strain and plane-deformation conditions have

been implemented into a finite-element model called CON2D coded in FORTRAN.  Special

aspects of the implementation of these models will be discussed here, as further details can be

found elsewhere [43, 99].

In three dimensions, the matrix form of equation (2.7) Hook's law is

{σ} = [C]{εe} , (2.44)

where {σ} is a 6x1 component vector for stress, {σ} = {σ11, σ22, σ33, σ12, σ23, σ31}T, {εe} is

a 6x1 component vector for elastic strain, {εe} = {εe
11, εe

22, εe
33, εe

12, εe
23, ε

e
31}T , and [C] is a

6x6  elastic matrix.  By deleting the stress and strain components which vanish in two

dimensions, these quantities simplify to {σ} = {σxx, σyy, σxy, σzz}T, {εe} = {εe
xx, εe

yy, εe
xy,

εe
zz}

T, and

[C]
4x4

  =  
E

(1+ν)(1−2ν)
 

 ⎣
⎢
⎢
⎢
⎡

 ⎦
⎥
⎥
⎥
⎤(1-ν) ν 0 ν

ν (1-ν) 0 ν

0 0
(1-2ν)

2
0

ν ν 0 1−ν

  , (2.45)
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where E is the temperature-dependent Young's modulus and ν is Poisson ratio.   For plane-

stress  (σzz = 0) and plane-strain (εzz = 0) conditions, [C] may further simplified to a 3x3

matrix to evaluate the element stiffness matrix terms for Eq. (2.38). To evaluate the element

“forces” contributed from thermal strain and inelastic strain using the initial strain method,

care should be made to incorporate the influences of thermal and inelastic strains in the

undiscretized z dimension on the in-plane equilibrium equation.

The third condition, generalized-plane strain, assumes strain in the third direction is

constant (εzz = a) over the entire simulation domain.  The fourth condition, plane-deformation

assumes strain in the z direction is a linear function of the in-plane coordinates:

  εzz = a + bx + cy.  (2.46)

For both generalized-plane-strain and plane-deformation conditions, strain-related

unknown variables  (a,b,c) are coupled with the in-plane displacements and must be solved

together with the global system of equations over the entire domain.  Thus, a mixed finite-

element formulation of displacements and strain-related variables is used for both conditions.

The associated element strain-displacement matrix [B]e,  defined in Eq. (2.36) also must be

modified accordingly.

For the finite-element implementation of the generalized-plane-strain condition, the

additional degree of freedom, a, is shared by each element in the domain.  Thus, the

modification of [B]e generates an additional equation to the in-plane equilibrium equations

already being satisfied:

  ∫ σzz dA    = Fz   . (2.47)

Here Fz is an external mechanical force acting in the undiscretized (z) direction which most

be specified as a contribution to the RHS of Eq. (2.38).  Furthermore, Fz is set to zero to

model a slice through a long unconstrained body.  This condition is appropriate for thermal
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stress problems with symmetrical domains, properties, and boundary conditions in both in-

plane directions.

For plane deformation, two additional equations and degrees of freedom are

generated:

 ∫ σzz y dA = Mx , (2.48)

 ∫ σzz x dA = My , (2.49)

Mx and My are in-plane external mechanical moments which act in the x and y directions

respectively, and are specified in the same manner as Fz.  Because the new degrees of

freedom are coupled with every other degree of freedom in the plane, the additional terms

generated in Eq.(2.38) produce non-zero terms in the shape of an "arrowhead” in the global

stiffness matrix [98].  This damages the banded nature of this matrix, which may

significantly increase computation time for some banded solution algorithms.  To overcome

this problem, a variable-bandwidth Cholesky solver was used as a “direct method” to the

solve the system of linear equations [114].  This skyline solver stores the non-zero

symmetric portion of each row of the banded, symmetric, positive-definite, coefficient matrix

in a one-dimensional array.

An alternative method has been implemented to overcome the arrowhead-shape

problem for generalized-plane-strain conditions.  This method partitions global system Eq.

(38) into parts, which are solved using iteration.  The first part of the equations is very

similar to the equations generated in the plane-strain model except considering influence to

the force from strain εzz.  The second part of equation is the discretized equilibrium equation

in the z direction Eq. (2.47).  Assuming initial εzz  is zero, this “iteration method” solves the

first part of the equation for the in-plane incremental displacements using the constant-

bandwidth Cholesky solver.  Then, εzz is adjusted using the second part of the equations.

These steps are repeated until convergence [58].
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2.4  Model validation and examples

To verify the proposed finite element system and its FORTRAN implementation,

several typical problems with known solutions have been solved by the CON2D model.  All

simulations were performed on a Silicon Graphics IRIS 4D / 25 workstation with 16 MBytes

of RAM.  Each problem was chosen to be a numerically challenging test of one or more of

the phenomena present in a solidifying body, as modeled with a 2-D thermal elastic-

viscoplastic generalized-plane-strain section.  Some of these examples are reported here.

 2.4.1  Cantilever beam with mechanical load

This problem tested the ability of the model to calculate displacement and stress under

simple mechanical loading.  The problem illustrated in Figure 2.2 is an isothermal, elastic, 0.1

x 1.2 x 4.8 m cantilever beam with a static 400 N/m parabolic shear load distribution at the tip.

From beam theory, the deflection at tip (point B) is 0.03583m while the axial stress at point A

is 600 MPa, with E = 300 GPa and  ν = 0.25.

            

y

B

1.2 m

1.2 m

4.8 m

x

A

Figure 2.2  Cantilever beam with shear load (test problem 1)

A uniform 5 x 9 (45 nodes) mesh was used to discretize the 1.2 x 4.8 m domain under

plane stress.  With 64 three-node triangular elements, tip deflection was 0.00337 m (5.3%

error), while the axial stress at point A was 537 MPa (-10.7% error).  With 16 six-node
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isoparametric triangular elements, tip deflection error decreased to -0.9% (0.03528m) while

the axial stress error decreased to -3.8% (577 MPa).  It is obvious that six-node isoparametric

elements produce much better accuracy than three-node elements for the same number of

nodes, as reported by others [115].

2.4.2    Thermal loading of a plate with temperature-dependent shear modulus

This problem tested the capability of the model to handle both thermal strains and

non-homogeneous material properties.  As shown in Figure 2.3, a 4 x 1m thermoelastic plate

in plane strain with a linear temperature-dependent shear modulus, µ = (7956.83 − 15.2373 x

T) MPa, was subjected to a linear temperature variation in the y direction increasing from

initial 0oC to a final distribution of T = 100 - 95(1-y) constrained in the x direction.  Other

constant material properties include  ν = 0.3 and thermal expansion coefficient, α = 0.125 x

10-4 (0C)-1.

           

4 my

x

1 m

Figure 2.3.  Finite-element model of plate with temperature-dependent shear modulus 

An analytical solution from Sladek [116] yields σx = -2α 
1 + ν 

 1 - ν 
 µ T, where σx reaches

-362.4 MPa at the upper side (x=0).
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The finite-element model with a uniform 17 x 5 (105 nodes) mesh produced σx at the

upper side of -389.8 (7.6% error) for 64 three-node elements and -365.9 (1.0% error) for 16

six-node elements.  Although the three-node triangular element solution for this non-

homogeneous problem is within engineering accuracy with this coarse mesh, it is out-

performed by the six-node triangular element, which assumes a  linear stress distribution

appropriate for the linear variation of material properties in this problem.

2.4.3   Unconstrained elastic pipe under thermal loading in generalized plane strain

This problem was selected to verify the ability of the model to handle two-dimensional

geometry and generalized-plane-strain constraint under thermal loading.  The inner surface

temperature of a long hollow cylinder is increased from zero to To while keeping the outer

surface temperature at zero, produces the steady state temperature field T(r)

T(r) = 
To ln

r
b

ln
a
b

 . (2.50)

From general thermoelasticity theory, this unconstrained hollow cylinder has axial strain εzz  as

   εzz  = 
2α ∫ba T(r)rdr

b2 - a2
   = 

α ∫∫ T(r) dA
 A  , (2.51)

in which b is the outer radius, a is the inner radius, A is the cross-sectional area, and material

properties are constant.  For b = 0.25m, a = 0.16m, E = 20 GPa, ν = 0.3, To = 100oC,  α =

0.00005,  εzz is 8.528x10-4 .

For finite element analysis, one quarter of a transverse section was modeled using a

uniform 21 x 11 (231 nodes), two-dimensional rectangular-Cartesian mesh of 100 six-node

elements under generalized plane strain, as shown in Figure 2.4.  Two methods for solving the

generalized plane strain problem were compared.  The direct method generated εzz = 8.530x10-

4 (0.023% error) and used 2.8s CPU time, while the iteration method produced εzz =
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8.593x10-4  (0.762 % error) after 5 iterations, using 3.8s CPU time on the same machine.

Because the direct method required less CPU time with better accuracy, it was selected for all

further analysis with generalized-plane-strain.

a
b

X

y

Figure 2.4.   Finite element model of heated elastic hollow cylinder (test problem 3)

2.4.4  Stress in a solidifying slab

Weiner and Boley developed an exact analytical solution of thermal stresses during 1-

D solidification of a slab with temperature-dependent, rate-independent, elastic-perfectly-

plastic material behavior [1].  Here, this problem was transformed into a challenging

benchmark test problem for thermal-mechanical analysis of solidification using an elastic-
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viscoplastic constitutive equation.  Both the finite element model developed in this work

(CON2D) and the commercial finite element package, ABAQUS, were used applied to solve

this problem.  In addition, several important computational factors including element size, time

step size, stress state in the undiscretized direction, and CPU time were investigated, in the

context of this “solidification test problem”.

Liquid Domain
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Figure 2.5  Chilled slab with one-dimensional solidification

2.4.4.1  Analytical solution

As shown in Figure 2.5, the problem involves one-dimensional solidification  (x

direction) in a semi-infinite domain.  Initially, the domain contains liquid at a uniform

temperature equal to the unique solidification temperature, Ts.  At time t = 0, the surface (x=0)
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is suddenly chilled to Tf. The elastic-perfectly-plastic constitutive behavior includes a yield

stress σY, which decreases linearly from 20 MPa at Tf to zero at Ts as shown in Figure 2.6.

Other thermal and mechanical properties are constants based on steel properties used by

Kristiansson [93] :   ρ = 7400 kg/m3,  c = 700 J/kgK, K= 33W/mK, latent heat L = 272 kJ/kg,

Ts = 1468oC,  Tf = 1300oC, ν = 0.35, α = 0.00002 K-1, E = 40 GPa.
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Figure 2.6  Constitutive behavior assumed in solidification test problem

The transient temperature distribution and the solidified shell thickness for this Stefan

problem can be found in Carslaw [117].  It is illustrated in Figure 2.8 at several different times.

Stress across the solidified shell is given by Weiner and Boley [1] assuming generalized plane

strain in both the y and z directions.  The transverse stresses σy, σz are equal and vary with x

while all other components of stress are zero.
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2.4.4.2  Numerical solution

The present finite-element model was used to analyze this one-dimensional

solidification test problem using the two-dimensional domain and mesh pictured in Figure 2.7.

Generalized plane strain was assumed in both y and z directions.  This stress state was

implemented in the y direction by imposing the constraint that the vertical displacements uy are

equal along the top side of the domain.

X

Constant generalized plane strain assumption in Y & Z directions

Vy  = Unknown constant 

Uniform mesh: 40 six node triangular elements and 123 nodes

Vy  = 0.0

Y

0.4mm

 8mm  

Figure 2.7   Finite element model of solidification test problem
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Figure 2.8  Temperature distribution in solidification test problem from analytical solution

The elastic-perfectly-plastic constitutive model of this present problem was

transformed into an elastic-viscoplastic model using the following nonlinear rate equation for

the inelastic strain rate,

ε
_.

p = f (σ
_

, s)  = A [max(σ
_

, σY) - σY]n , (2.52)

in which A = 1.0x108, n = 5.0.  This equation is a penalty function to ensure that rapid

inelastic strain occurs until the proper stress is achieved.  Although a first order power law with

a very large fluidity constant A can accurately  characterize the rate-independent material

behavior [118],  large n is used in order to increase the non-linearity and consequent numerical

difficulty of the problem.  This formulation of the problem is a particularly rigorous test of the

numerical algorithms, due to the severe nonlinear nature of equation (52).

To compare the numerical and analytical solutions, the relative error in norm L2 is

defined as

 L2=  (
  Σ|σzn -σza|2

Σ|σza|2
   )1/2  , (2.53)

in which Σ sums from 1 to the total number of nodes in the simulation domain, σzn represents

z stress from the numerical model (undiscretized direction), σza is z stress from the analytical

solution.
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Figure 2.9  Stress distribution through slab from elastic-viscoplastic finite element solution
(solidification test problem)
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The 8.0 x 0.4 mm domain was modeled for 10s using 40 six-node triangular elements

(41 x 3 nodes) and a constant time step size of 0.1s.  The σz distributions corresponding to the

times in Figure 2.8 are shown in Figure 2.9.  With the generalized plane strain state, it is clear

that compression appears on the cold surface while tension arises near the solid / liquid

interface.  This pattern enlarges as the shell grows.  Note that force balances require the

average stress through the slab to equal zero.  The σz stress distribution from the numerical

model at t = 10s is compared to the analytical solution in Figure 2.10.  The  relative error is

3.7% at t = 10s while CPU time is 22s for the CON2D model.  Both methods proposed in this

paper to treat liquid elements produced the same results with roughly the same CPU time.

2.4.4.3  Comparison with commercial package ABAQUS

To further evaluate the efficiency of the present model, this solidification test problem

was solved using ABAQUS.  At first, the elastic-perfectly-plastic constitutive behavior was

simulated using standard elastic-plastic constitutive equation by treating the liquid elements to

have a very small yield stress.  However, convergence was never reached even with a

prohibitively small time step.  Further investigation on a single element test problem, with

temperature-dependent yield stress,  revealed that once the yield stress in one element changes

by more than 100%, the fully implicit Newton-Raphson solution algorithm of ABAQUS is

divergent.  Thus, this method is unsuitable for stress analysis with solidification, which always

involves large increases in yield stress, as hot solid cools.  To get around this problem, other

researchers have used ABAQUS to approximate the solution to solidification stress problems

such as these, by invoking an arbitrary, non-physical "cut-off" temperature to completely

ignore stress generation in all elements above the cut-off temperature [119].

Next, ABAQUS was used to solve a simple elastic version of the test problem by

ignoring inelastic strain.  This also failed before a user subroutine was created to

simultaneously ignore the  T
. ∂C
∂T term in Eq.(9) and change the temperature-dependent elastic
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constants of liquid elements to avoid shear stress [113].  A comparison of the results from

ABAQUS and the present model for this problem is given in Figure 2.11.  Both simulations

used the same time step size (0.01s) and mesh size (0.4 mm spacing).  Although the stress

distributions from both programs match, the CPU time with ABAQUS is nearly 9 times that of

the model developed in the present work.  Furthermore,  the CPU time required by CON2D to

solve the full solidification test problem, including the highly nonlinear rate-dependent

constitutive behavior, increased only 20% over the linear-elastic problem from 2002s to 2200s.
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2.11  Comparison of elastic finite element approximations of solidification test problem

2.4.4.4  Effect of time step and mesh size

The solidification test problem in 2.4.4.2. was next used to study the influence of time-

step size and mesh refinement on the accuracy.  Twenty-four simulations were performed,

using four different time step sizes: 0.5s, 0.2s, 0.1s and 0.01s, and six different meshes: 11 x 3

mesh with 33 nodes and 10 six-node elements, 21 x 3 mesh with 63 nodes and 40 six-node
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elements,  41 x 3 mesh with 123 nodes and 80 six-node elements, 81 x 3 mesh with 243 nodes

and 80 six-node elements, 241 x 3 mesh with 723 nodes and 480 six-node elements, 801 x 3

mesh with 2403 nodes and 1600 six-node elements.  The relative error criterion of equation

(54) was again adopted, using z stress results at t = 10s.
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2.12  Effect of mesh refinement and time step size on relative error for solidification test problem

 The effects of different mesh size and time step size on error can be seen in Figure

2.12.  Accuracy generally improves with refinement of both time step size and element size,

except for very coarse meshes (i.e., 11 x 3 mesh) and very large time step sizes (i.e., 0.5s)

which have erratic results.  For any other time step size, the error decreases very fast with

initial refinement of element size (i.e., from 11 x 3 mesh to 41 x 3 mesh).  With continued

refinement, accuracy passes through an optimum and then improves very little or even

worsens.   It is likely that every given mesh size has an inherent limit in achievable accuracy

and an optimum time step size associated with it [120]. A similar conclusion can be made for

the refinement of mesh size.  Thus, to get a specified accuracy, there is an optimum

combination of element size and time step size.  For a  error of 3.7%,  the 40 x 3 mesh (17 six
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node element across the shell) with 0.1s time step size (100 time steps) is a cost-effective

combination to solve the solidification test problem in 2.4.4.2.
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 Figure 2.13 Variation of computational cost with mesh refinement

As shown in Figure 2.13, the CPU time per time step is a linear function of the

number of elements in the mesh when the problem is essentially one-dimensional and all

mesh patterns have same the band width of the stiffness matrixes and optimal node

numbering.  To decrease the  relative error from 3.7% to 0.1%, total CPU times increases

from  22 seconds to 4280 seconds.

It should be pointed out that many stress models of solidification processes in

previous literature appear to have used very coarse mesh sizes (similar or coarser than the 11

x 3 mesh).  This likely has led to large errors or possibly even an unrealistic stress solution.

A previous investigation comparing mesh and time step effects on the accuracy of heat

transfer simulations with solidification [120] reported that with 11 nodes across the
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solidification direction, the “average absolute error” was less than 0.1 % after 100 time steps.

The stress results with this mesh and time step size produce a 26 % relative error.  Thus, for

coupled thermal-mechanical analysis involving solidification, a much finer mesh is required

for the mechanical model, in order to get accuracy similar to that of the corresponding heat

transfer analysis.  At least 21 nodes across the solidifying shell are suggested, in order to

achieve engineering accuracy within 10 % relative error.

2.4.4.5  Effect of two-dimensional stress state

To examine the effect of stress state in the undiscretized z direction on the calculated

stresses, four different 2-D stress states were investigated: plane stress, plane strain,

generalized plane strain and plane deformation.  Other conditions of the solidification test

problem were kept the same, including the generalized plane strain condition in the y direction,

imposed by constraint equations.  The minimal effect of stress state on the in-plane y stress

can be seen in Figure 2.14.  As expected, z stresses from the different stress states are

completely different as shown in Figure 2.15.
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Figure 2.14  Effect of out-of-plane assumption on y stress for solidification test problem
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For solidification problems involving two-fold symmetry, such as long castings with

rectangular cross-sections, the most appropriate stress state is generalized plane strain,

assuming that friction against the mold walls and other axial forces are negligible.  When

modeling without exploiting symmetry, plane deformation is always appropriate.  It is

important to note, however, that a plane deformation analysis produces different results than

generalized plane strain when two-fold symmetry is exploited by modeling only one quarter of

the domain.  Using the same logic, either b or c in eq. (46) should be set to zero when

modeling half of a casting with a single symmetry plane, as appropriate.  The traditional stress

state of plane stress appears to be quite reasonable for the in-plane behavior.

2.4.4.6. Realistic constitutive behavior
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Having validated the model, the solidification test problem of 4.2.2 was modified to

include realistic constitutive behavior for solidifying plain-carbon steel using the rate-

dependent elastic-viscoplastic model III of Kozlowski et al [105].  This model was developed

to match tensile test results of Wray [121] and creep data of Suzuki [122] over a wide range of

strain rates, high temperatures, and carbon contents (%C) relevant to continuous casting

conditions:

ε
_.

p = f (σ
_

, s)  =  fc * exp(-
Q
T) * ( σ

_
 - f1ε

_
pf2)f3-1 , (2.54)

where Q = 44650 ,

 fc = 4.655x104+ 7.14x104 (%C) + 1.2x105 (%C)2 ,

f1 = 130.5 - 5.128x10-3 T ,

f2 = -0.6289 + 1.114x10-3 T ,

f3 = 8.132 - 1.54x10-3 T .

The σz stress results of a CON2D simulation using a 41 x 3 mesh and 0.1s time step

size are shown in Figure 2.16.  Compared with Figure 2.9, it can be seen that both figures have

same qualitative stress distribution.  However, the stresses in Figure 2.16 are lower in

magnitude and have a different shape.  Including phase transformations further changes the

stress pattern, and depends on the treatment of the thermal expansion and inelastic strain that

occurs during the transformation [9].
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Figure 2.16  Stress distribution with realistic (steel) constitutive equation for solidification test

problem

2.5  Summary  and conclusions

A two-dimensional fixed-grid finite element model of thermal-mechanical behavior

within solidifying bodies has been developed.  This model features a robust numerical scheme

to handle the highly-nonlinear unified constitutive equations employed to describe high-

temperature mechanical behavior and appropriate two-dimensional assumptions to properly

simplify the three-dimensional system.  The mathematical consistency of the model has been

verified using several known solutions.  Based on this investigation, several conclusions can

be made regarding stress analysis with solidification:

1) Fixed-grid methods present special numerical difficulties which require careful

consideration:
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a) liquid can be handled using one of several different methods.

b) accuracy in the undiscretized direction can be improved by choosing the

appropriate condition.  Generalized plane strain is best solved with a direct method using a

variable band-width solution algorithm.

c) the additional term in the rate formulation of the constitutive equation due to

temperature-dependency of the elastic modulus is important.

d) highly non-linear rate-dependent constitutive equations require a robust algorithm

to avoid numerical difficulties.

2) Combining a local method to estimate stresses and inelastic strains implicitly at

each material point with a global method to solve the finite element equations once each time

step is a robust and efficient way to solve problems with highly nonlinear elastic-viscoplastic

constitutive equations.  Stable convergence can be achieved with large time step sizes.

3) A benchmark test problem for thermal-mechanical analysis of solidification with a

known analytical solution has been developed, using a highly non-linear constitutive equation

to create a severe numerical challenge.  This test problem is ideal to compare finite element

models for solving mechanical problems with solidification.

4) Decreasing time step size greatly increases accuracy.  Accuracy within 3%  is

possible on a mesh with 17 elements across the solid shell.

5) Refining mesh size also improves accuracy, but only if the time step size is

sufficiently small.  An optimum mesh size likely exists for each time step size.  Accuracy

within 0.1% is possible with 1000 time steps and 170 elements across the solid shell.

6) The commercial FEM package (ABAQUS) has difficulty simulating realistic

constitutive behavior during solidification.  To solve a simple elastic test problem with



51

solidification, it requires an order of magnitude more computer time than the model presented

here.

7) Quadratic-displacement elements perform better than linear-displacement elements.

As part of a larger project to develop and apply a comprehensive system of

mathematical models of the continuous casting of steel slabs, this finite element model is

being used to predict stress and deformation in the solidifying shell in continuous casting

processes.  The model can realistically treat many complex phenomena, including phase

transformations, temperature-dependent properties, the effects of fluid flow, and intermittent

contact with the mold.  The results are being used to understand the mechanisms of formation

of a variety of shape and crack problems which arise in the process.  Owing to its general and

robust nature, this model is also suited to study thermal-mechanical behavior in other

materials processes such as foundry casting, welding and heat treatment.
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Chapter  3

Comparison of Numerical Time-Integration Schemes and Finite-Element Implementations

for Unified Temperature-Dependent Elastic-Viscoplastic Constitutive Models

Several robust and efficient numerical techniques have been implemented into

finite element calculations of unified, isotropic, temperature-dependent elastic-viscoplastic

models.  Three  numerical time-integration schemes are employed to integrate the

constitutive behavior,  including the explicit forward Euler scheme, the implicit backward

Euler scheme and the alternating implicit-explicit scheme based on the operator-splitting

technique.  The latter two implicit-related methods involve transforming the tensor

algorithm constitutive models for isotropic materials   into  two scalar equations to solve at

each spatial integration point.  This is similar to the uni-axial problem with prescribed

strain rate.  Several constitutive algorithms are examined to solve for the two unknowns of

stress magnitude and inelastic strain magnitude.  These "local" algorithms include the

successive substitution method, the forward gradient method, the Newton-Raphson

method, the bounded Newton method and the Nemat-Nasser's explicit prediction method.

The performance of each combination of methods were compared using a computational-

demanding solidification test problem with known solution.  Results indicate that a

formulation comprised of the alternating implicit-explicit time integration scheme and the

bounded Newton method at the local level calculation is the most robust, accurate and

efficient method.  Thus it has been selected to analyze complex thermal-mechanical

behavior in  continuous casting.

3.1  Introduction

Many complex  phenomena are involved in materials processing and

manufacturing processes.  These include internal structure evolution, severe thermal-

mechanical loading, complex states and histories of temperature, stress and  deformation.
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The finite element method is usually employed for spatial integration during nonlinear

analysis of these processes.  The importance of understanding these phenomena to

optimize the process  has motivated the development of more accurate and realistic

constitutive models to characterize mechanical behavior.  To properly represent typical

deformation phenomena such as  strain hardening and rate-dependent creep-plasticity

interactions over a wide range of temperatures encountered in elevated-temperature

processes such as casting and welding, it is accepted that unified elastic-viscoplastic

models are better than classic creep and plasticity theory [1-4].  However, there is  a

considerable challenge to utilize these models because the constitutive differential

equations for rate-dependent unified elastic-viscoplastic models are both highly nonlinear

and mathematically "stiff" [2, 5, 6].  This means that  a small changes of one state variable

may result in a large change of other state variables.  To overcome the stability problem

inherent in numerical integration of these stiff differential equations, a very small time

step size or a very sophisticated numerical algorithm with several iterations per time step

is needed. As a consequence, prohibitively high computational time can make modeling a

real process very expensive or even computationally impossible.  Developing robust,

accurate and efficient algorithms for large-scale finite element analysis of unified elastic-

viscoplastitic models is still a central problem of current research for modeling mechanical

behavior in materials processing and manufacturing, although extensive progress has been

made on this topic during the last two decades.

 In general, transient finite element analysis involving rate-dependent nonlinear

material behavior is performed in a discrete sequence of time increments using a time-

marching method starting from given initial conditions.  With a time-integration

procedure,  the rate-dependent constitutive model is transformed into a rate-independent

algebraic formula in terms of the state variables stress, strain, inelastic strain and internal

structure at the end of the time increment.  This algebraic formula is also called an

algorithmic constitutive model, to distinguish it from the rate form of the constitutive
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model.  Thus, besides the data that are known at the beginning of the time increment, the

stress with respect to the strain increment also depends on the time-integration scheme and

the related  forms of inelastic strain rate.  Numerical calculations on both the global level

and the local level are usually involved in the large-scale computation with the material

nonlinearity described by this kind of algorithmic constitutive model [7-10].   On the

global level, incremental strain at the end of a time step is calculated using various

Newton-Raphson schemes based on the finite element form  of global equilibrium

equations.  These schemes use the data from the beginning of the increment as well as data

from the local level calculation.  On the local level, stress and inelastic strain are

calculated  at each "material point" at the end of the time increment by a constitutive

algorithm to satisfy the algorithmic constitutive model in which the incremental strain is

estimated by the global level calculation.  These material points are  the spatial numerical

integration points of the finite element form of the equilibrium equations.  To get a

converged stress and strain field at the end of each time increment which satisfies both the

algorithmic constitutive model and the finite element form of the equilibrium equations,

either the nested iteration scheme  or the simultaneous iteration scheme can be used to link

the global and local level calculations.  Due to the complexity of the finite-element

implementation of a rate-dependent constitutive model, several numerical issues arise.

Although a large number of investigations have been made for nonlinear finite

element analysis with unified constitutive models, a generally applicable method which is

robust and efficient as well as easy for the finite element implementation has not been

demonstrated.  It is difficult to say which method is best because a method which

performs well for some problems may not work for another.  The constitutive model itself

also plays a significant role for the choice of stress  integration schemes.  Hornberger and

Stammm [11] showed that the explicit Euler scheme is more efficient than the backward

Euler scheme for their finite element analysis with Robinson's model while Corts and

Kollmann [12] pointed out that direct integration of Hart's model using an explicit
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algorithm was not possible.  Detailed studies of various stress integration schemes and

constitutive algorithms  for the specified constitutive models are necessary to characterize

the related model and schemes before performing a large-scale finite element analysis.

Furthermore, most of the schemes and algorithms developed are limited to their

applications on the isothermal, hypoelastic unified constitutive models.

The first objective of this study  is to develop finite element implementations of

methods proposed in the literature for numerical integration of general isotropic

temperature-dependent unified hyperelastic-viscoplastic models such as the model

developed by Kozlowski et al [4] for the continuous casting process.  Another objective is

to compare the relative efficiency and robustness of these  numerical implementations.

Specifically, three  numerical time-integration schemes are compared.  These include the

explicit forward Euler scheme, the implicit backward Euler scheme and the alternating

implicit-explicit scheme based on the operator-splitting technique.  The latter two method

involves transforming the tensor algorithm constitutive model of an isotropic material into

two simultaneous nonlinear equations in terms of two scalar  unknowns of the stress

magnitude and the inelastic strain magnitude.  This is very similar to the uni-axial problem

with prescribed strain rate.  In addition, various constitutive algorithms are compared for

solving this two-unknown equations at each material point.  These include the successive

substitution, the forward gradient method, the Newton-Raphson method, the two-level

bounded Newton method and the Nemat-Nasser's  method.  Evaluation and comparison of

the accuracy and efficiency of the proposed combined schemes are made through several

numerical experiments including uni-axial calculations and finite element analysis of a

numerically challenging problem of stress during solidification with a known solution.

3.2  Unified constitutive equations

Attention in this study is focused on "unified" temperature-dependent elastic-

visco-plastic models for mechanical behavior of isotropic metals.  The particular
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phenomenological approach used here evaluates the effective inelastic strain rate as a

function of the effective stress, the effective inelastic strain and temperature.  Furthermore,

the analysis is limited to classic small deformation theory, which implies that strains,

displacements and rotations all have negligible effect on geometry.  Each term in the

following equations represents a field variable, which varies continuously over the spatial

domain in 1, 2 or 3 dimensions.  For simplicity of notation, no special notation is used to

denote this.  In this section, bold variables are tensors containing more than one such field

variable component.  The total strain rate tensor  εεεε
....
  at a material point can be expressed by

an  additive decomposition into an elastic strain rate tensor  εεεε
. e, an inelastic strain rate

tensor  εεεε
. p  and a thermal strain rate tensor   εεεε

.T  ,

εεεε
.
  =  εεεε

. e  +   εεεε
. p   +  εεεε

.T  . (3.1)

 From the generalized form of Hooke’s law,  the stress tensor σσσσ can be written in

the form

σσσσ  = C :  εεεεe , (3.2)

or σij  = ∑
k=1

3
   ∑

l=1

3
   Cijkl   ε

e
kl

in which C is a fourth-order isotropic elastic tensor with components :

Cijkl (T) = λ(T) δij δkl + µ(T) (δik δjl + δil δjk ) , (3.3)

where λ(T) and µ(T) are temperature-dependent Lame constants and δδδδ is the kronecker

delta  ( δij  = 1, if i=j; otherwise δij  = 0).  The corresponding rate form of the constitutive

relation can be written as

σσσσ
.
  = C : ( εεεε

....
  - εεεε

.T-  εεεε
.p ) + T

. ∂C
∂T : ( εεεε  -   εεεεT -   εεεεp ) . (3.4)
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The second term in the above equation, which  is neglected in a hypoelastic form,  is the

contribution to the stress rate from temperature-dependent variation of the elastic tensor.

Equation (3.4) reduces to classical hyperelasticity in the absence of inelastic deformation.

For thermally isotropic materials, the thermal strain tensor εεεεT  is written  as

εεεεT = (TLE(T) - TLE(T0)) δδδδ , (3.5)

in which the state function TLE is the thermal linear expansion (m/m) caused by both

temperature differences and phase changes.  Thermal strain rate  εεεε
....T can be found by direct

or numerical differentiation of Eqs. (3.5), knowing the temperature field history.

For associated plasticity flow, components of the inelastic strain rate  εεεε
.p  are given

by  the Prandtl-Reuss relations

εεεε
.p = √⎯ 3

2  ε
_.

pN  , (3.6)

where N is the unit direction tensor of the inelastic strain rate,  defined as:

N = √⎯ 3
2 

σσσσ’

σ
_

  . (3.7)

Here the deviatoric stress tensor σσσσ’ and the effective stress  σ
_

 are defined by

σσσσ’ = σσσσ    − 13 tr (σσσσ) δδδδ  , (3.8)

σ
_   

= √⎯⎯⎯3
2 σσσσ’.σσσσ’  , (3.9)

respectively  ( tr (σσσσ) = ∑
i=1

3
 σii  ,  σσσσ    . σσσσ =∑

i=1

3
  ∑

j=1

3
 σij σji ).   The effective inelastic strain rate ε

_.
p,

which represents all inelastic effects including creep and plasticity,  is  a scalar function of

the current effective stress, the effective inelastic strain ε
_

p and temperature  T

ε
_.

p = f (σ
_

, ε
_

p,T)  . (3.10)
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3.3  Time-integration procedure

Adopting an incremental approach,  state variables (σσσσ, εεεε , εεεεp, u) at time t+∆t are

related with known values of these quantities at time t through a time-integration of the

given constitutive model.  During each step [t, t+∆t],  thermal strain rate is assumed to be

a constant and can be calculated from temperature, which is given by a separate thermal

analysis.

Using Eqs (3.1), (3.2) and (3.6), the state (σσσσ, εεεε, εεεεp, u) at time t+∆t can be expressed

in terms of the states at time t  as,

εεεεt+∆t = εεεεt + ∆ εεεε , (3.11)

εεεεp
t+∆t= εεεεp

t +  ∫t+∆t 
 t

 √⎯ 3
2  ε

_.
pN  dt , (3.12)

σσσσt+∆t = Ct+∆t  : [εεεεt  - εεεε
T
t  - εεεεp

t
 +  ∫t+∆t 

 t
(    εεεε
.
  - εεεε

.
T  - √⎯ 3

2  ε
_.

pN  )dt   , (3.13)

ut+∆t = ut + ∆ u  . (3.14)

Theses equations, (3.11)-(3.14), together with the global level governing PDE, i.e.,

equilibrium equations, must be solved simultaneously using a time-stepping algorithm,

which integrates over both the spatial and time domains.  The standard finite-element

method is used for spatial integration.  The next section reviews various time-integration

methods.

Some attempts [13, 14] have made to pursue nonlinear evolution of strain history

within one time step.  Nevertheless,  most finite element routines for time-dependent

nonlinear analysis assume constant strain rate  on the time interval [t, t+∆t ], which implies

a linear evolution of strain history.  Non-linear strain histories naturally lead to relatively

small time internals to control the inherent errors of this approximation.  From this
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assumption, σσσσt+∆t can be determined by proper integration of the inelastic strain rate in

Eqs. (3.13) which yields:

σσσσt+∆t = Ct+∆t  : [εεεεt  - εεεε
T
t  - εεεεp

t
 +  ∆ εεεε  -  εεεε

.
T ∆t - ∫t+∆t 

 t
(    √⎯ 3

2  ε
_.

pN  )dt . (3.15)

Among the many numerical integration schemes which could be used to evaluate

the time integrals in  Eqs (3.15),   three schemes encompassing the two most popular

schemes and one promising but relative new scheme are employed in this study.  These

schemes are known as: (1) one-step forward Euler scheme; (2) one-step backward Euler

scheme; and (3) two-step alternating implicit-explicit scheme from the operator-splitting

technique [15].  Each of these schemes will be described in the next section and discussed

from the point of view of numerical implementation as well as numerical stability and

accuracy.

3.3.1  Explicit time integration / forward Euler scheme

Applying an explicit forward Euler scheme to the inelastic strain rate in Eqs.

(3.15),  the following a linear algorithmic constitutive model is obtained:

σσσσt+∆t = Ct+∆t  : [εεεεt  - εεεε
T
t  - εεεεp

t
 +  ∆ εεεε  -  εεεε

.
T ∆t - √⎯ 3

2  ε
_.

p
tN t  ∆t ]  , (3.16)

Eqs. (3.16) is a classic implementation of the initial strain method [16-19].  The

incremental strain ∆εεεε is found from spatial integration using the finite element method.

Then σσσσt+∆t and εεεεp
 t+∆t 

  are simply updated using  through  Eqs. (3.16) and (3.12).  It is well-

known that this scheme is first-order accurate and only conditionally-stable.

Compared with various multi-step integration schemes including the predictor-

corrector, fourth-order Runge-Kutta and Gear's method, this simplest one-step forward

Euler method has been found to perform better numerically [18, 20].  However, the

conditional stability of this scheme may restrict the time step size to be far smaller than
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that of the corresponding accuracy requirement [21].  Although Cormeau [21] found

stability criteria for some simple viscoplasitity models, these stability criteria can not be

expanded to general unified elastic-viscoplasic models.  The danger of numerical

instability or inaccuracy by manually controlling the time step size may lead to unreliable

solution.  The computational cost of this method depends on the time step size, which can

be quite small.

3.3.2  Implicit time integration / backward Euler scheme

Several implicit time-integration schemes are available to treat the inelastic strain

rate in Eqs. (3.15) [8, 11, 12, 16, 17, 22-28].  These schemes are designed to overcome the

stability problems of the explicit method for integrating highly nonlinear rate-dependent

constitutive models.  Most of these schemes fall into one of two popular families of

algorithms: the generalized trapezoidal rule and the generalized midpoint rule.  Ortiz and

Popov [12] studied the accuracy and stability of these algorithms for elasto-plastic models.

These elasto-plastic models also can be transformed into rate-dependent constitutive

models.  The equivalent inelastic strain rate in these models is determined by the plastic

consistency  condition [12].  Their results show that both schemes are unconditionally

stable for the relaxation factor ≥ 0.5 for a von Mises' flow and first order accurate  of the

local truncation error.  The Euler backward scheme, a special case of both algorithms

(relaxation factor is 1 for both algorithms),  is unconditionally stable and has better

accuracy for both large strain increment  and small strain increment.  The choice  0.5 of

the relaxation factor leads to second-order accuracy for small strain increments.  This

conclusion is also  consistent with the investigations for viscoplastic models in other

similar studies [8, 22-26].  In fact,  the backward Euler integration scheme of inelastic

strain rate in the unified constitutive models is a generalization of the well known [25]

"radial-return" algorithm of classic rate-independent plasticity [29, 30].
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Applying the backward Euler scheme to both the inelastic strain rate in Eqs.(3.15)

and the effective inelastic strain rate in Eqs.(3.10), the following nonlinear system of

algebraic equations is obtained:

σσσσt+∆t = Ct+∆t : [εεεεt  - εεεε
T
t  - εεεεp

t
 +  ∆ εεεε  -  εεεε

.
T ∆t - √⎯ 3

2  f (σ
_

t+∆t ,  ε
_p

t+∆t,T)  Nt+∆t ∆t ] , (3.17)

ε
_p

t+∆t  = ε
_p

t + f (σ
_

t+∆t , ε
_p

t+∆t , T) ∆t   . (3.18)

Again, ∆ εεεε  is found from the finite element calculation or global calculation.   The

algorithmic constitutive model in Eqs.(3.17) and (3.18) is then solved for σσσσt+∆t and ε
_p

t+∆t .

Numerical implementation of this scheme is relative complex due to strong non-linearity

of these equations.  A nested iteration scheme is usually used to perform this type of

nonlinear analysis.  The outer equilibrium iterations seek the end-of-incremental

displacement or the strain rate from the finite element equilibrium equations at time t+∆t

based on the estimated σσσσt+∆t and ε
_p

t+∆t .   The inner constitutive iterations enforce  σσσσt+∆t and

ε
_p

t+∆t to satisfy  the algorithmic constitutive model at each material point with  the

estimated ∆ εεεε from global level calculation.   Final convergence to the solution of ∆ εεεε ,

σσσσt+∆t and ε
_p

t+∆t   should simultaneously satisfy the algorithmic constitutive model and the

finite element equilibrium equations.  Instead of using the nested iteration scheme, Hughes

and Taylor [31] developed a simultaneous iteration scheme to communicate between the

global and local level calculations.  In their simultaneous iteration scheme, the algorithmic

constitutive model is linearized using a truncated Taylor series of the inelastic strain rate

in order to avoid the local level iteration.

3.3.3  Mixed implicit-explicit time integration / alternating implicit-explicit scheme

Three types of mixed  implicit-explicit time integration schemes have been

developed to take the advantage of both the implicit and explicit time integration schemes.
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The first  is the forward gradient method [10, 17, 32-35].  In this scheme,  the algorithmic

constitutive equations are linearized to avoid expensive global-level iterations.  Local

level iteration is avoided by  implicit integration of the inelastic strain rates and expansion

of at least one of the state variables in a truncated Taylor series about the current time

step.  Time step size restriction for stability is less stringent than the explicit Euler scheme,

although these semi-implicit schemes are still conditionally stable.  Their shortcoming is

less accuracy over the knee of the stress-strain curve, which leads to inaccurate solutions

for large time step size or large strain increment.

The second method is the spatial-explicit-implicit scheme in which the space

domain is divided into an implicit part and an explicit part .  Chen and Hsu [36] employed

this scheme  for creep stress analysis.  However, for complex thermo-mechanical

processes such as casting, this scheme is obviously not suitable due to the difficulty of

separating space domain into implicit and explicit parts.

The last mixed time-integration scheme is the alternating implicit-explicit scheme.

This scheme is based on an operator-splitting technique which alternates between implicit

and explicit forms of the total strain rate and inelastic strain rate in two time steps when

evaluating the time integrals in Eqs.(3.13).   Glowinski and Talle [15] used this scheme  to

integrate a steady state creep model with a constant elastic tensor and no thermal strain,

which is a special case of the constitutive model in the present study.  This scheme

originated from the well-known ADI scheme of Douglas and Rachford [37]  for spatial

integration of the transient heat conduction problems.  The most attractive feature of this

scheme is avoiding expensive global-level iteration without incurring the numerical

instability problems of conditional stability inherent to fully explicit schemes.  This

scheme is similar to the forward Euler integration algorithm with non-iterattive sub-

incrementing, which has been found to be computational efficient for some viscoplastic

analysis [9, 38, 39].  However, instead of using sub-incrementing for local level numerical
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integration,  the unconditionally stable backward Euler method is used to integrate the

inelastic strain rate in this scheme.  This makes the solution more reliable and accurate at

the price of local level iteration.  This relatively new two-step time integration is the third

scheme evaluated in this study.

In the first “local” step, stress and inelastic strain rate are estimated through

implicit time integration at each material point, knowing the total strain rate at time t from

the previous time step:

σσσσ̂t+∆t = Ct+∆t  : [εεεεt - εεεε
T
t  - εεεεp

t  + (εεεε
....
t  -  εεεε

.
T  - √⎯ 3

2   f(σ
_̂

t+∆t , ε
_̂p

t+∆t, T) N̂t+∆t )∆t ]  , (3.19)

ε
_̂p

t+∆t = ε
_p

t  +  f(σ
_̂

t+∆t , ε
_̂p

t+∆t, T) ∆t  . (3.20)

In the second “global” step, stress and total strain rate are found through implicit

spatial integration using the finite element method, based on explicit time integration

using  σ
_̂

t+∆t and  ε
_̂p

t+∆t  from step 1:

σσσσt+∆t = Ct+∆t  : [εεεεt - εεεε
T
t  - εεεεp

t
  +  (εεεε

....
t+∆t  -  εεεε

.
T  - √⎯ 3

2  f(σ
_̂

t+∆t , ε
_̂p

t+∆t, T) N̂t+∆t )∆t ]. (3.21)

In these equations, ^ represents intermediate, estimated terms.

In the first step, total strain rates based on the known incremental displacement

field calculated in the previous time step are used to update the current stress and inelastic

strain at each material point.  Eqs. (3.19)-(3.20) and (3.6-3.10) thus constitute a system of

nonlinear equations with 15 unknowns (two tensors and three scalars) to find at every

material point of a three dimensional analysis.  Various constitutive algorithms,  which

will be discussed  in the next section,  may be used to calculate these stress and inelastic

strain.  The same local level calculations  are needed in the implicit backward Euler

scheme in section (3.32).  Details of this solution procedure are given in the next section.
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In the second step, the inelastic strain rate is based on the estimate in the first step.

Thus, Eq.(3.21) can be regarded as a simple elastic constitutive equation with an initial

strain or initial stress.  The current total strain rate is found by solving the elastic

constitutive equation and the system equilibrium equations using a global numerical

method for spatial integration such as the finite element method.

 It should be noted that,  σσσσ̂t+∆t , used to calculate  the end of the increment  inelastic

strain  in the second step of this scheme,  does not satisfy the finite element equilibrium

equations at either time t+∆t  or time t.

3.4  The constitutive algorithm

For both the backward Euler and the alternating implicit-explicit schemes, the

nonlinear constitutive equations including Eqs.(3.17) and (3.19) should be solved for the

current stress and inelastic strain, based on the estimated incremental strain from either the

previous time step solution or the current time step solution. The method used to

accomplish this is called the "constitutive" algorithm or the "local" algorithm.

Defining the estimated incremental strain as ∆ εεεε̂ , the nonlinear constitutive

equations in section 3.3.2 and 3.3.3 can be rewritten as

σσσσt+∆t = Ct+∆t  : [εεεεt  - εεεε
T
t  - εεεεp

t
 +  ∆εεεε̂  -  εεεε

.
T ∆t - √⎯ 3

2  f (σ
_

t+∆t ,  ε
_p

t+∆t,T) Nt+∆t∆t ] ,(3.22)

ε
_p

t+∆t  = ε
_p

t + f (σ
_

t+∆t , ε
_p

t+∆t , T) ∆t   . (3.23)

For brevity,  the intermediate stress and the inelastic strain corresponding to the estimate

incremental strain  ∆εεεε̂ are simply express as σσσσt+∆t,  εεεε    
p
t+∆t  in this section.  Equations (3.22)

and (3.23) constitutive a system of nonlinear equations with 14 scalar unknowns (two

tensors and two scalars) in a three dimensional analysis.  This problem could be solved by

various Newton-Raphson based iterative schemes [5, 6, 11, 12, 23, 24, 28, 39, 40],
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successive substitution  [21] or the Nemat-Nasser's non-iterative scheme  [41, 42].  With

so many unknowns, this would  be very computationally expensive however.  Several

attempts have been  made to reduce the number of unknowns in this local level

calculation.  Hornberger and Stamm [11] used a projection method to transform an

algorithmic constitutive model, based on Robinson's viscoplastic model by generalized

midpoint rule, into only two nonlinear equations with two unknowns.  Considering  that

the inelastic flow direction can be determined before  solving any nonlinear  equations

when using the generalized trapezoidal rule for von Mises flow, Lush et al [24] reduced an

isotropic single internal variable model into two scalar equations.  Furthermore, the

number of unknowns can be reduced to 1 when implicit integrating the inelastic strain rate

and explicit integrating the internal variable rate at the same time [25, 43].  Walker et al

[38, 44] proposed an asymptotic integration algorithm by recasting the state evolution

equation into integral form and approximating the integrals  as a uniformly valid

asymptotic series.  This reduced a class of state-variable based viscoplastic models from

19 for 3D problem  [39] to 3 unknowns.

In this work, equations (3.22) and (3.23) are transformed into two unknown

equations folloiwing a method similar to that of Lush [24] .

Substituting Eqs. (3.3)   into Eqs. (3.22), gives:

σσσσt+∆t = σσσσ*
t+∆t -  √⎯ 6 µt+∆tf(σ

_
t+∆t ,  ε

_p
t+∆t,T)  Nt+∆t  ∆t , (3.24)

where

 σσσσ
*
t+∆t =  Ct+∆t  : [εεεεt  - εεεε

T
t  - εεεεp

t
 +  ∆εεεε̂  -  εεεε

.
T ∆t] . (3.25)

By taking the deviatoric part of (3.24),  substituting σσσσ’
t+∆t = √⎯ 2

3  σ
_

t+∆t Nt+∆t , gives:

 σσσσ*’
t+∆t  = (√⎯ 2

3  σ
_

t+∆t   + √⎯ 6 µt+∆tf(σ
_

t+∆t ,  ε
_p

t+∆t,T) ∆t  ) Nt+∆t , (3.26)
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which means that Nt+∆t  and  σσσσ
*’
t+∆t  have the same direction.  Thus ,

Nt+∆t  = √⎯ 3
2 

σσσσ*’
t+∆t

σ
_*

t+∆t

  , (3.27)

and

σσσσ’
t+∆t  =  σ

_
t+∆t  

σσσσ*’
t+∆t

σ
_*

t+∆t

   . (3.28)

Combining Eqs. (3.26) and (3.28) produces:

 σ
_

t+∆t = σ
_*

t+∆t - 3 µt+∆tf(σ
_

t+∆t ,  ε
_p

t+∆t,T) )∆t  . (3.29)

Equations (3.29) and (3.23) form a pair of nonlinear scalar equations with two unknowns

σ
_

t+∆t and  ε
_p

t+∆t .

Summary of the constitutive algorithm

Step 1.  Estimate incremental strain ∆εεεε̂ from the incremental displacement at time t or

current time t+∆t. 

Step 2.  Calculate  σσσσ
*
t+∆t  using equation (3.25) .

Step 3.  Calculate the deviatoric part  and the effective stress of   σσσσ
*
t+∆t .

Step 4.  Solve equations (3.29) and (3.23) for  σ
_

t+∆t  and ε
_p

t+∆t.

Step 5.  Calculate stress σσσσt+∆t  by:

σσσσt+∆t =  σ
_

t+∆t  
σσσσ

*’
t+∆t

σ
_*

t+∆t

  + 13 tr ( σσσσ*
t+∆t ) δδδδ      .
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Step 6.  Calculate  εεεε
....p
t+∆t. and   ε

_p
t+∆t.

The problem in step 4 is very similar to a uniaxial  problem with prescribed strain

rate which is integrated by the implicit backward Euler scheme.  It is necessary to develop

a solution strategy for the nonlinear equations in step 4.  Several methods including the

successive substitution, the Newton-Raphson method, the forward gradient method, the

bounded Newton-Raphson method and the Nemat-Nasser's explicit prediction method are

implemented and compared in this study.  Although the problem in step 4 can be further

simplified as a nonlinear equation with one unknown, all methods except the bounded

Newton-Raphson method are still based on the original equations with two unknowns in

step 4 in order to illustrate their physical nature.

 Rewriting the equations in step 4, gives:

y = g(y) , (3.30)

in which y = (y1, y2)T  = (σ
_

t+∆t,  ε
_p

t+∆t)
T  and g = (g1, g2)T are defined as

y1 = g1(y1, y2) = σ
_

t+∆t  =  σ
_*

t+∆t - 3 µt+∆tf(σ
_

t+∆t,  ε
_p

t+∆t,T)∆t  , (3.31)

y2 = g2(y1, y2) = ε
_p

t+∆t  =   ε
_p

t   + f(σ
_

t+∆t, ε
_p

t+∆t, T)∆t  . (3.32)

If  an iterative method is employed to solve Eqs. (3.30),  convergence criteria is selected

as

| e | = | y - g(y) | ≤ 10-5 yc , (3.33)

in which yc = ( σ
_*

t+∆t,  ε
_p

t  )T is the characteristic magnitude of  y.

3.4.1 The successive substitution  (Picard method)



77

Successive substitution is the simplest iterative method. The value of y at (i+1)-th

iteration is defined from y at the i-th iteration

  yi+1 = g(yi)  , (3.34)

with  y0 = (σ
_

t, ε
_p

t )T.

This method is fast and easy to code but the convergence rate is slow and

divergence may occur for large time step sizes when the nonlinearity is great [45].

Numerical experiments for rate-dependent constitutive models reached a similar

conclusion.  Cormeau found that the unconditional stable backward Euler integration

scheme with this method as the constitutive algorithm suffers from a similar time-step

restriction as the forward Euler scheme algorithm due to convergence problems [21].

Krieg also showed an example where this method fails to converge [5].

3.4.2 The Newton-Raphson method

This method is known to have a  fast convergence rate.  Iteration proceeds as

follows:

yi+1 = yi + (g(yi) - yi) (I2 -  
∂g
∂y (yi))-1 , (3.35)

with  y0 = (σ
_

t, ε
_p

t )T, where I2  is an identity matrix of order 2 and the Jacobian 
∂g
∂y  is a 2x2

matrix.  This method requires a substantial additional computational effort to evaluate the

Jacobian 
∂g
∂y  and to invert the matrix (I2 -  

∂g
∂y (yi)) at each iteration.

3.4.3 The forward gradient method

Instead of solving the nonlinear Eqs. (3.30) directly, it is linearized by using a

truncated Taylor series to approximate g at reference point y0 = (σ
_

t, ε
_p

t )T,
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y = g(y0) +  
∂g
∂y (y0)(y - y0)  . (3.36)

Solving linear equation (3.36), obtained:

y = (g(y0) - y0∂g
∂y (y0))(I2 -  

∂g
∂y (y0))-1  . (3.37)

It is obvious that this method only approximates the solution, but it has the advantage of

no iteration.  This method is just the first iteration of the Newton-Raphson method.

3.4.4  The bounded Newton-Raphson method

Due to the very stiff nature of most rate-dependent constitutive models, the

Newton-Raphson method with 2 unknowns equations may still cause the convergence

problems [46].  This problem can be improved by a bounded N-R algorithm based on the

dual forms of unified constitutive models including a stress driven form and a strain

driven form [46].

 Eqs. (3.31) and (3.32) can be further transformed as

y2 = y2(y1) =  ε
_p

t   - 
y1 - σ

_*
t+∆t

 3 µt+∆t
  , (3.38)

y1 =  σ
_*

t+∆t - 3 µt+∆tf(y1, y2(y1))∆t   . (3.39)

Equation (3.39) is a nonlinear equation with only one unknown y1. Lush et al [24]

developed a two-level iterative scheme based on the bounded Newton-Raphson method to

solve their governing equations with two unknowns of the effective stress and structure

variable.  This is found more efficient and robust than either the standard Newton-

Raphson method or the forward gradient method.  Here, a similar scheme  is implemented

to solve equation (3.39).
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At first,  the lower bound y1-lower  and the upper bound y1-upper are initialized,

assuring y1, y2 and f are always positive,

y1 ≤ σ
_*

t+∆t  , (3.40)

f(y1, y2(y1)) ≤  
σ
_*

t+∆t

 3 µt+∆t∆t
  , (3.41)

y2  ≤ ε
_p

t  +  
σ
_*

t+∆t

 3 µt+∆t
   . (3.42)

Assuming that equation (3.10) can be inverted as

σ
_

 = f-1 (ε
_.

p, ε
_

p)  , (3.43)

Equation (3.41) and (3.42) give

y1 ≤   f-1 ( 
σ
_*

t+∆t

 3 µt+∆t∆t
  , ε

_p
t  +  

σ
_*

t+∆t

 3 µt+∆t
   ) , (3.44)

in which f-1  is assumed to be a incremental function with respect to ε
_.

p and ε
_

p .  Equation

(3.40) and (3.41) correspond to the two limiting cases where elastic and inelastic strain

increments dominate the respond respectively.  Thus we can initialize

y1-lower  = 0 , (3.45)

y1-upper  = min (σ
_*

t+∆t ,  f
-1 ( 

σ
_*

t+∆t

 3 µt+∆t∆t
  , ε

_p
t  +  

σ
_*

t+∆t

 3 µt+∆t
   )  . (3.46)

Applying the Newton-Raphson scheme to Eq.(3.39), the Newton-Raphson

correction for the i-th iteration ∆yi
1-NR   is obtained as
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∆yi
1-NR = 

σ
_*

t+∆t - 3 µt+∆t∆t f(yi
1,y2(yi

1)) - yi
1

1 + 3 µt+∆t∆t 
∂f
∂y1

(yi
1,y2(yi

1))  - ∆t
∂f
∂y2

(yi
1,y2(yi

1))
     , (3.47)

The maximum allowable correction ∆yi
1-max is calculated using a quasi-bisection

scheme.  If ∆yi
1-NR <0, then set

y1-upper = yi
1  , (3.48)

and the maximum allowable correction  is

∆yi
1-max = 

1
2 (y1-lower  - y

i
1)  ; (3.49)

If ∆yi
1-NR > 0, then set

y1-lower = yi
1  , (3.50)

and the maximum allowable correction is

∆yi
1-max = (y1-upper  - y

i
1)  . (3.51)

The correction ∆yi
1 is determined as

∆yi
1 = ∆yi

1-max ,  if |∆yi
1-NR| > |∆yi

1-max|. (3.52)

Otherwise,

∆yi
1 = ∆yi

1-NR  . (3.56)

Finally,  yi+1
1   is updated :

yi+1
1 = yi

1 + ∆yi
1  . (3.57)

The corresponding yi+1
2  is calculated from equation (3.38).
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3.4.5 The Nemat-Nasser's explicit  prediction method

 Nemat-Nasser et al [41, 42] developed an explicit constitutive algorithm for their

isothermal hypoelastic-viscoplastic models.  Their algorithm includes a plastic predictor

followed by an elastic corrector and   can be considered as a special case of forward

gradient method with the proper initial solution by exploiting the fact that most of the

deformation in incremental inelastic deformation is due to plastic flow with a very small

elastic deformation.  Based on their numerical experiments  for several constitutive

models, they concluded this algorithm is robust, stable and very accurate for any large or

small time increments.  The appearing aspect of this algorithm is its "explicit"

characteristic, which means no iteration in the local level calculation.

Following the process they employed, a temperature-dependent version for

hyperelastic-viscoplastic models is obtained to solve the problem in step 4.

Rearrange equation (3.29) as

 σ
_

t+∆t -  σ
_

t = 3 µt+∆t∆t (ε
_.

p0
t+∆t - ε

_.p
t+∆t ) , (3.58)

in which the initial approximation of the inelastic strain rate ε
_.

p0
t+∆t is defined

ε
_.

p0
t+∆t  = 

σ
_*

t+∆t -  σ
_

t

 3 µt+∆t∆t
  , (3.59)

initial approximations of the effective inelastic strain and the effective stress from

equations (3.23) and (3.43) are obtained:

 ε
_p 0

t+∆t =  ε
_p

t  - ε
_.

p0
t+∆t∆t  , (3.60)

 σ
_0

t+∆t =  f-1 ( ε
_.

p0
t+∆t,  ε

_p 0

t+∆t) . (3.61)
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Approximating  f-1 in equation (3.43) at time t+∆t by a truncated Taylor series t with the

initial approximations of inelastic strain rate and effective inelastic strain as,

σ
_

t+∆t =  σ
_0

t+∆t + 
∂f-1

∂ε
_.

p

 |0 (ε
_.p

t+∆t -  ε
_.

p0
t+∆t) +  

∂f-1

∂ε
_

p
 |0 (ε

_p
t+∆t-  ε

_p 0

t+∆t ),     (3.62)

combining Eqs. (3.62), (3.60), (3.58) and (3.23), the effective stress and the effective

inelastic strain are updated as follows:

σ
_

t+∆t = 
ησ

_
t + σ

_0
t+∆t

1+ η
  , (3.63)

ε
_p

t+∆t =  ε
_p

t  +  ε
_.

p0
t+∆t ∆t -  

σ
_0

t+∆t -  σ
_

t

3 µt+∆t(1+ η)
  , (3.64)

where

η = ( 
∂f-1

∂ε
_.

p

 |0 1
∆t

 +  
∂f-1

∂ε
_

p
 |0 )

1
3 µt+∆t

 . (3.65)

Eqs. (3.63)-(3.65) give an approximate solution for step 4 when the material response is

essential inelastic.  Compared with the forward gradient method discussed in section 3.4.3,

this method has a relative "good" reference point for the truncated Taylor series.

Once the material response is essential elastic, which is characterized by the

condition ε
_p

t+∆t <  ε
_p

t  from equation (3.64), the alternative solution suggested by Nemat-

Nasser et al [42] is

σ
_

t+∆t  =  σ
_*

t+∆t - 3 µt+∆tf(σ
_

t  ε
_p

t ,T)∆t  , (3.66)

ε
_p

t+∆t  =   ε
_p

t   + f(σ
_

t, ε
_p

t , T)∆t  . (3.67)
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3.5  Spatial integration / finite element implementation

The different time-integration schemes must be implemented into a numerical

scheme for spatial integration.  The standard finite element method is employed in this

work.

Using the standard Galerkin's method[47], the quasi-static boundary value problem

can be transformed into the following system of algebraic equations at each node in the

finite element domain:

∑
e=1

ne
 ∫ve  ([B]e)T{σ}dV = ∑

e=1

ne
 ∫ve  ([N]e)TbdV  + ∑

e=1

ne
 ∫Ate

( [N]e)T t-  dA  , (3.68)

in which ne is total number of elements, the summation symbol represents the global

assembly operation, [B]e is the standard strain-displacement matrix for element e defined

by spatial differentiation of the shape functions, [N]e  is the shape function matrix for the

element e,  {σ} is a 6x1 component vector for the stress tensor, {σ} = {σ11, σ22, σ33, σ12,

σ23, σ31}T, b represents the body force vector and t- expresses the prescribed surface

traction on domain boundaries.  The left hand side of the equation is the internal force

vector and the right-hand side of the equation is the applied load vector. This equilibrium

equation must be  satisfied at every time step of the simulation.

Various global solution procedures have been developed for global-level iteration

with the finite element method when non-linear materials are simulated [16, 19, 24].

These  include the tangent stiffness method or fully Newton-Raphson method and the

initial strain method or modified Newton-Raphson method.  The former is widely used for

plasticity problems while the latter is popular for creep analysis.  One advantage of the

initial strain method is that the global stiffness matrix remains constant for each iteration

although it is partially offset by its lower convergence rate which is best at linear.  The

tangent stiffness method, on the other hand, must reform the global stiffness matrix for
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each iteration at given time step but its convergence rate is asymptotic quadratic as

compensation.  It should be pointed out that , to maintain the quadratic rate of asymptotic

convergence for fully Newton-Raphson method, the tangent operator must be consistent

with the numerical method employed to integrate the inelastic strain rate equation [24, 48-

50].  Consistency implies that the stress increment predicted by the tangent operator acting

on the strain increment matches the stress increment predicted by the integration

procedure to first order [49].  In this investigation, the initial strain method is employed.

Substituting the algorithmic constitutive models from the numerical integration

schemes discussed in section 3 into the finite element equilibrium equation (3.68) at time

t+∆t and using the strain / displacement relation

{∆ε}e = [B]e{∆u}e  , (3.69)

the following algebraic system of  finite element  equations is obtained:

∑
e=1

ne
  ∫ve ([B]e)T [C][B]edV{∆u}t+∆t  = ∑

e=1

ne
 ∫ve ([N]e)TbdV  + ∑

e=1

ne
 ∫Ate( [N]e)T t-  dA

           - ∑
e=1

ne
  ∫ve  ([B]e)T{σ~}dV + ∫ve ([B]e)T [C]{∆ε~}dV  , (3.70)

in which [C]  is the matrix form of the 4th order  elastic tensor at time t+∆t, {σ~} and {∆ε~}

are current estimate of the stress and incremental strain vectors.  This will be discussed

respectively for each numerical integration scheme.

For the explicit Euler forward scheme,

 ∆εεεε~ = εεεε
.
t ∆t  , (3.71)

 σσσσ~  = Ct+∆t  : [εεεεt  - εεεε
T
t  - εεεεp

t
 + ∆εεεε~ -  εεεε

.
T ∆t - √⎯ 3

2  ε
_.

p
tN t  ∆t ]   . (3.72)

For the alternating implicit-explicit scheme,
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∆εεεε~ = εεεε
.
t ∆t  , (3.73)

σσσσ~   = σσσσ̂t+∆t = Ct+∆t : [εεεεt - εεεε
T
t  - εεεεp

t  + ∆εεεε~ -  εεεε
.

T∆t  - √⎯ 3
2  f(σ

_̂
t+∆t , ε

_̂p
t+∆t, T) N̂t+∆t∆t] ,(3.74)

in which  σσσσ̂t+∆t is calculated at the first step of this scheme.

For both of the above time integration schemes, the equation (3.70) is a system of

linear equations to solve  for the incremental displacements.

For the implicit backward Euler scheme,

∆εεεε~ = ∆εεεε = εεεε
.
t+∆t∆t , (3.75)

σσσσ~  = σσσσt+∆t  = Ct+∆t : [εεεεt - εεεε
T
t  - εεεεp

t  + ∆εεεε~ -  εεεε
.

T∆t  - √⎯ 3
2 f (σ

_
t+∆t ,  ε

_p
t+∆t,T) Nt+∆t∆t] ,(3.76)

equation (3.70) becomes nonlinear so has to be solved in an iterative manner due to the

coupling of ∆εεεε~ and σσσσ~ with the current incremental displacement. Assuming σσσσ (k) is the

solution from local level calculation with the kth estimate of the incremental strain ∆εεεε(k),

the (k+1)th equlilibrium iteration is carry out by solving the following system of linear

equations:

∑
e=1

ne
  ∫ve ([B]e)T [C][B]edV{∆u}

(k+1)
t+∆t   = ∑

e=1

ne
 ∫ve ([N]e)TbdV  + ∑

e=1

ne
 ∫Ate( [N]e)T t-  dA

           - ∑
e=1

ne
  ∫ve  ([B]e)T{σ(k)}dV + ∫ve ([B]e)T [C]{∆ε(k)}dV. (3.76)

After updating the estimated incremental strain ∆εεεε(k+1) with the incremental displacement

{∆u}
(k+1)
t+∆t  from the (k+1)th equilibrium iteration, σσσσ (k+1) is obtained using a proper

constitutive algorithm for the current estimate ∆εεεε(k+1)  of the incremental strain to satisfy

the algorithmic constitutive model at every material point.  This process is repeated with k

until the equilibrium iteration converges within a specified tolerance of equation (3.70)

with σσσσ(k+1) .
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From the above discussion, it is clear that the alternating implicit-explicit scheme

requires only the first equilibrium iteration part of the solution procedure of the  backward

Euler scheme.

3.6  Results and discussion

3.6.1 Specified constitutive models

Two constitutive models used in our example problems can be written in the

following form:

ε
_.

p = f (σ
_

, ε
_

p,T)  = A x[max(σ
_

, σY) - σY]n . (3.78)

The first model is the rate-dependent elastic-viscoplastic model III of Kozlowski

[4].  This model was developed to match tensile test results of Wray [51] and creep data of

Suzuki [52] over a wide  range of strain rates and high temperature (T (k)) and varying

carbon contents (%C) for plain-carbon steel under continuous casting conditions:

A  =  fc exp(-
Q
T),

σY =  f1ε
_

pf2 ,

n   = f3 ,

where

Q = 44650 (K-1) ,

fc = 4.655x104+ 7.14x104 (%C) + 1.2x105 (%C)2 ,

f1 = 130.5 - 5.128x10-3 T ,

f2 = -0.6289 + 1.114x10-3 T ,



87

f3 = 8.132 - 1.54x10-3 T .

The second model is a rate-independent elastic-perfectly-plastic model with

temperature-dependent yield stress.  This is transformed into an elastic-viscoplastic model

using a penalty approach by setting A = 1.0x108, n = 5.0 in equation (3.79).  Although a

first order power law with a very large fluidity constant A can accurately  characterize the

rate-independent material behavior [28], large n is used in order to increase the non-

linearity and consequent numerical difficulties of the problem.

3.6.2  Uniaxial calculations

The performances of the discussed time integration schemes as well as the

constitutive algorithms  for the selected rate-dependent constitutive models were evaluated

using uniaxial test problems with fixed total strain histories.  Only the forward Euler and

the backward Euler schemes are employed in this study because the alternative implicit-

explicit scheme is exactly identical to the backward Euler scheme for this case.  Numerical

experiments for the tensile test and the stress relaxation test are reported here.

The first uniaxial problem involved a tensile test with constant strain rate (0.0024

sec-1) until 6% total strain at 950oC for 0.005%C steel.  An accurate reference solution

was obtained using 25,000 time steps (2.4x10-6 strain increment) of the simple forward

Euler scheme.  Figure 3.1 shows the effective inelastic strain-stress curves with different

time increments for the forward Euler scheme.  It can be seen at least 250 time steps

(2.4x10-4 strain increment) are needed to overcome the stability problems inherent in this

scheme.  Compared with the reference solution, the solution with 250 time steps is quite

accurate with only 0.03% error in stress at 5% effective inelastic strain.

The backward Euler scheme with successive substitution failed to reach a

converged solution with 250 time steps (2.4x10-4 strain increment).  The solution from
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500 time steps (1.2x10-4 strain increment) is same as the result from the forward Euler

scheme with same number of time steps.  The results from the backward Euler scheme

with the forward gradient method are shown in Figure 3.2.  It is clear that this method is

less accuracy  for relatively large time step sizes (i.e., 1.2x10-3 strain increment) during

the knee range of the stress-strain curve.  The Newton-Raphson method and the bounded

Newton-Raphson  method for the backward Euler scheme  gave the same result (shown in

Figure 3.3) without any convergence problem  for any time step size.  The results  from

just one time step or 6% strain increment showed that the relative error of the stress at 6%

strain is just 0.18%.  Corresponding to 5 time steps (1.2% strain increment) and 1 time

step (6% strain increment),  the total number of iterations for the one-unknown bounded

Newton-Raphson scheme are 26 and 5 respectively as opposed to 38 and 31 of the two-

unknowns Newton-Raphson scheme.  For this test problem, the Nemat-Nasser's explicit

prediction method employed in the backward Euler scheme also worked very well  for

different  time steps including 6% strain increment.  Some of the results from this method

are illustrated Figure 3.4.
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            Figure 3.1 Uniaxial tension result from forward Euler scheme
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          Figure 3.2  Uniaxial tension results from forward gradient method
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Figure 3.3  Uniaxial tension results from backward Euler scheme with N-R iteration
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Figure 3.4  Uniaxial tension results from backward Euler scheme with Nemat-Nasser

prediction method

The second uniaxial test problem simulated an abrupt change in load history.  It

started with 25 seconds tension with a constant strain rate 0.0004 sec-1 until total strain of

1% was reached at 900oC for 0.18%C steel.  This was followed by 175 seconds of stress

relaxation, with total strain remaining fixed at 1%.  The reference solution gained from the

forward Euler scheme with 200,000 time steps showed that the stress gradually increases

for the first 25 seconds as the stress-strain curve is followed.  Stopping the tension

produced a rapid decrease in stress for the next 10 seconds then rapidly decreased in next

10 seconds, which levels towards a steady state solution, as shown  in Figure 3.5.  This

figure also shows that the maximum time step size of the forward Euler scheme  without

the instability is 400 time steps.

Similar to the result of the tension test, the backward Euler scheme with the

successive substitution method met a convergence problem with the relative small time

step size (800 time steps) which is less than the critical time step size of the forward Euler
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scheme.  The results from the forward gradient method are showed in Figure 3.6.  For this

typical problem, the forward gradient method allowed relative large time step size (200

time steps) without the accuracy and stability problems.  For large time step size (40 time

steps) this scheme still suffered accuracy problems.  In Figure 3.7, both Newton-Raphson

type iterative methods in the backward Euler scheme  captured the main phenomena  even

for large time step size (16 time steps or one time step during the tension region).

However the accuracy of the stress during the range in which the stress rapidly decreases

is relative lower.  This is due to the first order characteristic of the backward Euler scheme

and relative large time step size used here which  spans whole transition range of the

stress.  Corresponding to 40 time steps and 16 time steps,  the total iteration numbers of

the one-unknown bounded Newton-Raphson scheme are 84 and 27 respectively as

opposed to 128 and 52 of the two-unknowns Newton-Raphson.  Unlike the result of the

tension test, the Nemat-Nasser local  method in the backward Euler scheme failed to

produce the correct stress pattern during the relaxation range, although it exactly

duplicated the results for the tension range as shown in Figure 3.8.  This is partly because

the reference point for the truncated Taylor series is not a good approximation for the case

including the higher stress with  zero strain rate.

From above uniaxial calculations, it can be concluded for the specified constitutive

model  that the backward Euler scheme with either the successive substitution method or

the forward gradient method offer little or no advantage compared with the forward Euler

scheme.  Two type Newton-Raphson methods with the backward Euler scheme are robust

and accurate although the bounded Newton-Raphson method is more efficient.  The

Nemat-Nasser’s prediction method performed very well for the tension problem while it

failed for the stress relaxation problem.  Based on these results, several combined finite

element schemes for the unified constitutive models will be further evaluated in the next

example.
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          Figure 3.5  Stress relaxation results from forward Euler scheme
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Figure 3.6  Stress relaxation results from forward gradient method
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       Figure 3.7  Stress relaxation results from backward Euler scheme with N-R iteration
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Figure 3.8  Stress relaxation results from backward Euler scheme with the Nemat-Nasser

prediction method
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3.6.3  Thermal stress analysis in a solidifying slab

 Weiner and Boley developed an exact analytical solution of thermal stress during

1-D solidification of a slab with temperature-dependent, rate-independent, elastic-

perfectly-plastic material behavior [53].  This problem has been transformed into a

benchmark test problem which has gained extensive investigations  with an elastic-

viscoplastic constitutive equation [54].   Here, this test problem is employed to evaluate

the proposed algorithms for the elastic-viscoplastic analysis.  Detailed discussions for the

treatment of liquid elements in the fixed-grid method, generalized plane strain

implementation as well as the effect of time step and mesh size can be found elsewhere

[54].

As shown in Figure 3.9, the problem involves one-dimensional solidification  (x

direction) in a semi-infinite domain.  Initially, the domain contains liquid at a uniform

temperature equal to the unique solidification temperature, Ts. At time t = 0, the surface

(x=0) is suddenly chilled to Tf.  The elastic-perfectly-plastic constitutive behavior includes

a yield stress σY, which decreases linearly from 20 MPa at Tf to zero at Ts as shown in

Figure 3.10.  Other thermal and mechanical properties are constants based on steel

properties used by Kristiansson  [55] :   ρ = 7400 kg/m3,  c = 700 J/kgK, K= 33W/mK,

latent heat L = 272 kJ/kg, Ts = 1468oC,  Tf = 1300oC, ν = 0.35, α = 0.00002 K-1, E = 40

GPa.
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The transient temperature distribution and the solidified shell thickness for this

Stefan problem with a unique solution temperature can be found in Carslaw [56].  It is

illustrated in Figure 3.11 at several different times.  Stress across the solidified shell  is

given by Weiner and Boley [53] assuming generalized plane strain states in both y and z

directions.  The transverse stresses σy, σ z are equal and vary with x while other

components of stress are zero.

The numerical model was used to analyze the stress in this one-dimensional

solidification test problem.  The two-dimensional finite-element domain and mesh

pictured in Figure 3.12 was adopted.  Generalized plane strain conditions were  assumed
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in both y  and z directions.  The generalized plane strain state in the y direction was

implemented by imposing the constraint that the vertical displacements are equal on the

top side.
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 Figure 3.11Temperature distribution in solidification test problem from analytical

solution
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Figure 3.12   Finite element model of solidification test problem
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To test  the rate-dependent constitutive behavior, the elastic-perfectly-plastic

constitutive model adopted in the present problem was transformed into an elastic-

viscoplastic model using the nonlinear penalty function rate equation for the inelastic

strain rate as discussed on section 3.6.1.  This is a particularly rigorous test of the

numerical algorithms due to the severe challenge required to model a time-independent

constitutive equation with a strong nonlinear elastic-viscoplastic function.

To compare the numerical solutions with the analytical result, the relative error in

norm L2 is defined as

 L2=  (
  Σ|σzn -σza|2

Σ|σza|2
   )1/2  , (3.78)

in which Σ  from 1 to total nodes number of the simulation domain, σzn represents z stress

from the numerical model,  σza is z stress from the analytical solution.

Five different combinations of the time-integration schemes and constitutive

algorithms  including the explicit forward Euler scheme, the implicit backward Euler

scheme with the bounded Newton-Raphson method (Implicit-BNR), the implicit

backward Euler scheme with the Nemat-Nasser's prediction method (Implicit-NPM), the

scheme  alternating implicit-explicit with the bounded Newton-Raphson method (AIE-

BNR) and the alternating implicit-explicit  scheme with the Nemat-Nasser's prediction

method (AIE-NPM)   are employed to analyze the test problem.  The 8 x 0.4 mm domain

was modeled for 10s using 40 six-node generalized plane strain  elements and time step

size of 0.1s.  This combined time step size and mesh size was found to be an optimum

combination for controlling the relative error L2 within 4% [54].  The σ z stress

distributions of different algorithms from the numerical model  at t = 10s are compared to

the analytical solution in Figure 3.13.  The relative errors and CPU times on IRIS 4D/25

of different algorithms  are summarized in Table 3.1.  For this special penalty-type
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constitutive model,  the explicit forward Euler scheme completely failed to get the correct

solution since it suffered from stability problems even for very small time size (0.0001s)

while the results of other four algorithms are in excellent agreement with the analytical

solution without any stability problem for this relatively large 0.1s time step size.  For

both types of constitutive algorithms, the simulation process of the alternative implicit-

explicit scheme is  6-7 times faster than the implicit backward Euler scheme.  Compared

with the CPU times  of the implicit backward Euler scheme with different constitutive

algorithms, the constitutive level iterations took approximate 12% percent of the total

CPU time.  Although the CPU time of the alternating implicit-explicit scheme with the

Nemat-Nasser's prediction method is slightly less than that of the alternative implicit-

explicit scheme with the bounded Newton-Raphson method, the alternating implicit-

explicit scheme with the bounded Newton-Raphson method is still selected to analyze

complex thermal-mechanical behavior with the unified constitutive models due to its

better reliability.

More realistic constitutive behavior was simulated for solidifying plain-carbon

steel using the rate-dependent elastic-viscoplastic model III of Kozlowski [4] instead of

the penalty-type constitutive model while all of other simulation conditions were kept

same as before.  It is found that the explicit forward Euler scheme worked for this

constitutive model with the limited time step size 0.005s with CPU time 412s without

numerical overflow while the CPU time of the alternating implicit-explicit scheme with

the bounded Newton-Raphson method is just 27 seconds.  The Z stress results of this

realistic constitutive model are shown in Figure 3.14.
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Table 3.1. Comparison of Accuracy and Cost of Different Elastic-viscoplastic FEM
Algorithms

Method Relative Error
at 10s

CPU time (s)
L2 (%)  on IRIS4D/25

AIE-BNR 3.7 22
AIE-NPM 3.3 21

Implicit-BNR 4.1 143
Implicit-NPM 3.1 128

Explicit numerical
overflow

>20000

* the explicit scheme  has numerical overflow even for 0.0001s time step size
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3.7  Conclusion

Several robust and efficient numerical techniques have been implemented into a

finite element calculation of unified, isotropic, temperature-dependent  hyperelastic-

viscoplastic models.  Three  numerical time-integration schemes are employed to integrate

the constitutive models,  including the explicit forward Euler scheme, the implicit

backward Euler scheme and the alternating implicit-explicit scheme based on the operator-

splitting technique.  Various constitutive algorithms corresponding the successive

substitution method, the forward gradient method, the Newton-Raphson method, the

bounded Newton method and the Nemat-Nasser's explicit prediction method are examined

after transforming the tensor algorithm constitutive models of the isotropic materials   into

problems with two scalar unknowns of the stress magnitude and the inelastic strain
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magnitude.  Based on  some numerical experiments for the specified constitutive models

for the high temperature plain-carbon steel, the following conclusion can be stated:

1. The alternating implicit-explicit scheme is stable and efficient compared with

the forward Euler scheme and the backward Euler scheme.  The implicit backward Euler

scheme with proper constitutive algorithms takes 7 times more CPU time than this scheme

while the explicit forward Euler scheme suffered stability problems.

2. The implicit backward Euler scheme with the successive substitution method

and non-iterative forward gradient method was equal or slightly worse than the explicit

forward Euler scheme.  The successive substitution method has a convergence problem

while the  forward gradient method lost  accuracy with  large time step size.

3. Although both Newton-Raphson's methods performed very well, the bounded

Newton-Raphson method is slightly more efficient.

4. The Nemat-Nasser's prediction method worked very well for some problems and

failed with others.

5. The alternating implicit-explicit scheme with the bounded Newton-Raphson

iteration is most robust, accurate and efficient combination of methods investigated.  Thus,

it has been chosen  for future thermomechanical analysis of the solidification problem.
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Chapter 4

Thermal Distortion of Solidifying Shell near Meniscus in Continuous Casting of Steel

A two-dimensional, transient, finite-element model has been developed to simulate

temperature, shape, and stress development in the steel shell, during the initial stages of

solidification in the mold.  The model is applied to predict the distorted shape of a vertical

section through the shell, during a sudden fluctuation in liquid level at the meniscus.  The

calculation includes the effects of temperature-dependent properties, thermal shrinkage, phase

transformations, and creep, using an elastic-viscoplastic constitutive equation for low carbon

steel.  The model features a robust, efficient algorithm to integrate the highly temperature- and

stress-dependent constitutive equation for the inelastic-creep strain rate.  The results show that

thermal stress causes the exposed portion of the thin shell to bend towards the liquid, when

there is a severe, sudden drop in liquid level.  In addition, the axial temperature gradient

creates high transverse stresses.  The subsequent rise in liquid level increases the bending.

These results illustrate an important mechanism contributing to the formation of transverse

surface depressions and short longitudinal surface cracks associated with severe liquid level

fluctuations.

4.1 Introduction

Most of the surface defects in continuous casting are suspected to initiate during the

early stages of solidification in the mold, especially near the meniscus pictured in Figure 4.1.

These defects include deep oscillation marks, surface depressions, longitudinal and transverse

surface cracks.  Although a body of empirical knowledge and evidence exists, the exact

mechanisms for many of these problems are still unclear.

Undoubtedly, there are several different causes of different types of surface

depressions.  Oscillation marks have been proposed to originate from pressure buildup in the

lubricating flux channel between the shell tip and mold during the negative strip time [1].
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Interaction between the initial shell and the solid flux rim [2] or negative taper of the mold

wall in the meniscus region [3] has been proposed to further add to this mechanism.

Alternatively, if the meniscus freezes, this leads to a “meniscus mark” depression, often

beneath a subsurface “hook” [1], when the liquid steel level overflows the meniscus each

oscillation cycle [4].
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Solidifying Steel Shell
Oscillation Mark

Copper
Mold
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Flux Powder
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Steel surface level
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Figure 4.1 - Schematic of initial solidification near meniscus

Other depressions are not related directly to oscillation.  A depression characterized

by a double skin, with a carburized outer layer, has been reported by Kusano et al [5].  This

defect was attributed to carbon pickup by the steel touching the powder flux layer directly and

forming a lower melting point steel that ran over the meniscus during level fluctuations.

Jenkins et al [6] have shown that another kind of depression may form during the peaks in

large, slowly cycling mold level, possibly due to interaction of the newly solidifying shell with

the slag rim.  Depressions or “laps” in high carbon steel billets have been shown to originate

near the meniscus [7].  They were attributed to boiling of the lubricating oil, bleeding through

partial tears of the weak shell, and liquid level fluctuations [7].  A different type of surface

depression may form longitudinally along the off-corner region of the slab wideface.  These

have been shown to originate due to inadequate shell growth in the affected region,



109

compression of the shell by excessive taper in the lower part of the mold, and bulging between

rolls just below the mold [8].

Finally, large, random surface depressions, or “ripple marks”, have been observed

which can extend to depths exceeding 1 mm, especially in steels with carbon content near

0.1% [4, 9].  These depressions have been attributed to thermal stresses due to the large

shrinkage of the delta ferrite to austenite phase transformation of these steels.  In addition, the

peritectic phase transformation favors a high coherency temperature near the equilibrium

solidus temperature, and a relatively strong shell [10].  Other grades, particularly steels with

higher carbon contents, exhibit segregation, particularly of sulfur and phosphorus.  This

creates liquid films at the grain boundaries, which persist to much lower temperatures, leading

to a coherency temperature far below the equilibrium solidus temperature and a relatively

weak shell for a given amount of heat extraction [10].  The weaker shells presumably flatten

due to ferrostatic pressure, so are less prone to depressions.

Many previous studies have correlated surface defects, including shallow surface

depressions and longitudinal cracks, with fluctuations in the level of the liquid steel meniscus

at the top surface of the mold.  For example, a study of twin roll casting of stainless steel

strip found that shallow surface depressions and longitudinal cracks were both suppressed

by taking measures to minimize liquid level fluctuations [11].

Longitudinal surface cracks often exhibit similar symptoms and are attributed to

similar causes as surface ripple depressions.  They are both particularly severe in 0.1% C

steels.  They are also associated with large variations in mold temperature with time [12].

Longitudinal cracks have been found to depend on factors influencing mold flow conditions,

such as the nozzle geometry and submergence depth [12, 13].  This is believed to be due to

their increasing likelihood with higher amplitude surface waves [13].

To alleviate longitudinal cracking, it has been proposed that heat flux from the shell

to the mold be reduced at the meniscus [14].  Wolf suggests that transverse depressions in

0.1 %C steels and certain stainless steels also are lessened by avoiding local overcooling
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near the meniscus, which causes contraction due to a “plastic hinge effect” and rebending

[15].  They can be reduced by lowering heat flux, via higher casting speed, higher superheat

and an optimized mold flux.  Specifically, depressions are found to lessen in 0.1% C steels

when using a high melting point, low viscosity flux [16].

Clearly, the phenomena which occur during the initial stages of initial solidification in

the mold of a continuous casting machine are extremely complex.  Despite the body of

empirical evidence pointing to the importance of initial shell deformation and mold level

variations on surface depressions and cracks, very few previous attempts have been made to

quantify and understand these phenomena using mathematical models.

One of the few previous studies used the MARC finite element program to predict

the deformed shape of the initial shell during an oscillation cycle due to pressure variation in

the flux channel [17].  The results agreed qualitatively with some observed trends of

oscillation marks, but disagreed with others and differed by an order of magnitude with

measured depression depths.  No previous deformation model has studied the effect of mold

level variations.

Finite-element models of heat transfer and stress have been developed to simulate the

transient, two-dimensional temperature, shape, and stress distributions in the solidifying steel

shell [18].  In this work, these models are applied to examine temperature and stress

development during a brief, but severe fluctuation in liquid level at the meniscus.  The results

reveal a mechanism by which level fluctuations can lead to surface depressions and cracks.

4.2 Model Description.

A transient, thermal-elastic-viscoplastic finite-element model, CON2D [18], has been

developed to follow the thermal and mechanical behavior of a section of the solidifying steel

shell, as it moves down the mold at the casting speed.  It is applied in this work to simulate

behavior of a longitudinal slice down the centerline of the wide face shell near the meniscus.

4.2.1 Heat transfer model  formulation
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Using a Lagrangian frame of reference fixed on the strand moving at constant velocity

(the casting speed) in the z-direction and considering that the deformation rate is small

compared with the casting speed, the equation (2.1) governing heat transfer in the

continuously-cast strand reduces to :

∂
∂x (kx

∂T
∂x ) + 

∂
∂z (kz

∂T
∂z )  =  ρCp 

∂T
∂t   . (4.1)

The finite element domain is a thin longitudinal slice of steel along the mid wideface of the

mold wall, containing the initially solidifying shell as shown in Figure 4.2.  The heat flow in

the transverse  (y) direction  is negligible along the wideface far from the corner.  So a 2D

model in the x-z plane is considered.
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Figure 4.2 - Movement of longitudinal slice model domain during simulation

Applying the standard Galerkin finite element formulation [19] to Eq. (4.1) yields the

following matrix equations:

[K]{T} + [C]{Ṫ}  =  {Q} , (4.2)

where [K] is the conductance matrix , [C] is the capacitance matrix including the effects of

solidification, and {Q} is the heat flow vector.  Terms in these matrices were evaluated exactly

using the standard consistent formulation [20] as detailed in Appendix A.
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The latent heat of solidification is incorporated into Eq. (4.2) through an effective

specific heat in [C], which is evaluated using the spatial averaging technique suggested by

Lemmon  [21],

     Cpeff
  =  

∂H
∂T  = 

 || grad H ||
 || grad T ||  , (4.3)

where, ||  || represents the norm.  Here, H(T) is the temperature-dependent enthalpy function

for the steel alloy which includes the latent heat of solidification and is defined in terms of

nodal values and element shape functions in the same manner as temperature.

This model employs the Dupont [22] three level time-stepping technique, which

utilizes results of two previous time steps to approximate the temperature {T} and the time

derivative of temperature {Ṫ}  as,

{Ṫ} = { 
Tt+∆t - Tt

∆t
 } , (4.4)

{T} = 
1
4 {3Tt+∆t + Tt-∆t},  (4.5)

where {Tt+∆t} are the unknown temperatures, for which the current equations are being

solved, {Tt} are the temperature at the last time step, and {Tt-∆t} are the temperature at the time

step before {Tt}.  This scheme is an optimal compromise between stability and accuracy [20].

Applying this technique to Eq. (4.2) yields the recurrsion formula,

 
 ⎣
⎢
⎡

 ⎦
⎥
⎤3

4 [K] + 
[C]
∆t

 {Tt+∆t}  =  {Q} - 
1
4 [K] {Tt-∆t} + 

[C]
∆t

 {Tt}. (4.6)

Eq. (4.6) is then solved at each time step for the unknown temperatures {Tt+∆t} using the

standard Choleski decomposition solution routine  [23].

Since the fixed-grid method is employed here to simulate heat transfer, special

treatment is needed to handle the liquid level drop / rising phenomena, which will discussed

later.
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4.2.2  Mechanical model formulation

The stress model solves for the stresses, strains, and displacements, by interpolating

the previously-calculated thermal loads onto a fixed-grid finite-element mesh of 6-node

triangles [18, 24, 25].  Detailed discussion about the governing equations, finite element

formulation and solution procedure can be found in Chapter 2.  The effects of volume

changes due to temperature changes and  phase transformation are incorporated through a

temperature- dependent thermal-linear-expansion (TLE) function.

The out-of-plane (y-direction) stress is characterized by the state of generalized plane

strain.  This allows the 2-D model to reasonably estimate the complete 3-D stress state, for

the wide, thin shell of interest.  This is the best assumption in the absence of friction, because

the longitudinal slice is constrained by the rest of the shell to remain planar as it moves down

the mold.

Constitutive behavior for solidifying plain-carbon steel was simulated using the rate-

dependent, elastic-viscoplastic model III of Kozlowski [26].  This model was developed to

match tensile test measurements of Wray [27] and creep data of Suzuki [28] over a range of

strain rates, temperatures, and carbon contents to simulate austenite under continuous casting

conditions.  The elastic modulus varied with temperature (800 ˚C to solidus) according to the

following polynomial, based roughly on measured data from Mizukami et al [29]:

E (GPa) = 674 - 1.53 T(˚C) + 0.0012 T(˚C)2 - 0.000000317 T(˚C)3. (4.7)

These constitutive equations are integrated using a new two-level algorithm, which alternates

between solutions at the local node point and the global system equations [30].  Elements

containing liquid as defined by the specified coherency temperature, are set to have no elastic

strain.  Validation of this model using both analytical solutions and measurements from

operating slab casters is described elsewhere [31].

4.2.3  Special treatment for liquid level dropping / rising
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For the heat transfer analysis, a drop in liquid level is simulated by suddenly turning

the liquid elements into " air elements" with zero latent heat.  These air elements  have  very

small conductivity, specific heat, density and enthalpy, which greatly lowers heat transfer rate.

The temperature of liquid nodes is fixed to the ambient temperature during this cooling

stage.  The internal heat transfer boundary between the solidified shell and the air is turned

on to cool down the solidified shell.  Once the liquid level rises, the properties of the air

elements are suddenly changed back to those liquid elements and their temperature is

replaced by the pouring temperature.

The mechanical analysis requires no change, as the air  elements are treated as the

liquid element with zero elastic strain as discussed in chapter 2.

4.2.4  Thermo-mechanical property data

Accurate material property data is a key to the successful prediction of any model.

Therefore careful selections were made for the property data used in these simulations.  The

majority of the data for plain-carbon steel was obtained from the work of Harste [32]  and

the data for stainless steel was obtained from Pehlke [33] .

4.2.4.1 Thermal conductivity

The temperature dependent thermal conductivity function used in the model is shown

in Figure 4.3, which also shows the effect of carbon content on the thermal conductivity

function.
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4.2.4.2 Enthalpy

The enthalpy H, which represents the total heat content, is shown as function of

temperature and carbon in Figure 4.4.   The curve for stainless steel is also plotted in the same

figure.
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4.2.4.3 Thermal linear expansion

The thermal linear expansion (TLE) function used in the model is shown in Figure

4.5 as a function of both temperature and carbon percentage for plain carbon steels.  The

TLE function for autenitic stainless steel (taken from [33]) used in the model is mainly based

on the expansion of austenite and also shown in Figure 4.5.  For carbon steel, the function,

which is taken from [32], shows a sharp transition representing the δ−γ transformation.
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4.2.5 Boundary conditions

A Lagrangian formulation is adopted, so the model domain is initially assumed to

contain stress-free liquid at uniform temperature, To. The shell is assumed to form

continuously below a sharp meniscus and move downward at the casting speed, as illustrated

in Figure 4.2.  Thus, the heat flow model imposes a zero heat flux condition on those portions

of the mesh above the liquid level prior to the level drop.

q =  0,  for   z > Vc t  and  x = 0. (4.8)

q = hc (T - Tm), for   z < Vc t   and  x = 0. (4.9)
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After the shell has moved downward 20 mm (1.2s), the liquid level is suddenly dropped for

0.6s.  This roughly approximates the duration of an oscillation cycle or a random flow

transient.  During this time, liquid elements are ignored and the following boundary condition

is imposed along the exposed solid shell, defined by the location of the solidus isotherm at the

time of the level drop:

q = ha (T - Ta), for   1.2s < t < 1.8s. (4.10)

Finally, the level is raised again at 1.8s, by restoring the liquid elements at the initial

temperature, and allowing solidification to continue.  Note that the level is restored only to

the top of the shell tip, so that overflow of the meniscus is not simulated.  Heat transfer

coefficients and temperatures are given in Table 4.1.  Zero heat flux is assumed across the

top, bottom, and liquid-steel sides of the domain.

All external surface tractions were set equal to zero, except for fixing three nodal

displacements at the domain bottom to prevent rigid body motion.  This stress-free condition

models shell behavior in the absence of mold friction, pressure in the flux channel, or

ferrostatic pressure.
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Table 4.1 Simulation Conditions

Material properties Ultra-low carbon steel (ULC)
Composition 0.003%C
Liquidus Temperature 1535.76 ˚C
Solidus Temperature 1534.63 ˚C

Casting Conditions
To Initial temperature 1537 ˚C

Superheat 1.24 ˚C
Vc Casting speed  16.7 mm/s (1 m/min)
Tm Mold temperature 250 ˚C
hc Mold / shell heat transfer
coefficient

2000 W/m2K

Mold friction none

Level fluctuation conditions
duration 0.6 s
Distance of level drop 30 mm
Distance of subsequent level rise 20 mm

Ta Ambient temperature 35 ˚C
ha Ambient heat transfer coefficient 272  W/m2K

Simulation conditions
Domain size 3 x 20 mm
Stress state generalized plane strain

4.2.6  Discussion of model assumptions

This work considers a very severe drop in liquid level, (20-30 mm) in order to

examine the maximum expected effect of thermal distortion of the solidifying shell caused by

a level fluctuation.   Level fluctuations of this size are possible in practice by rare

circumstances which generate an abnormal surface wave, such as the entrapment and release

of large argon bubble(s) in the nozzle, sudden release of a nozzle clog, sudden bulging (as a

depression moves beneath a roll) below the mold or temporary loss of level control.  These

events are generally accompanied by severe surface defects, which this work aims to explain.

Understanding how these severe defects are formed should also shed light on the formation

of defects caused by lesser fluctuations, including oscillation marks.

Ultra-low carbon steel (0.003%C) was selected for this initial work for several

reasons.  First, this alloy is almost pure iron, so exhibits very little segregation.  Thus, the

mushy zone (between solidus and liquidus temperature) is very thin and the coherency

temperature (at which the shell can bear a load) is assumed equal to the solidus temperature.
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This simplifies development of the model considerably.  Secondly, the high coherency

temperature of this alloy is expected to make it behave in a similar manner to the defect-

sensitive 0.1 %C peritectic steels.  Finally, ultra-low carbon steel is commercially important in

its own right.

The model neglects pressure forces which act on the shell.  This includes ferrostatic

pressure, which tends to flatten out the distorted shell when the level is high.  The model also

ignores pressure variations in the molten flux, which tend to enhance bending of the meniscus

and shell towards the liquid, which is one of the causes of oscillation marks.  These pressures

are both on the order of 1 kPa.  To include them properly requires a transient flow analysis of

both the molten flux and the molten steel.  Although these effects are important, they are not

expected to completely overshadow thermal distortion of the shell, if it has a fully solid layer.

The model ignores the drop in heat transfer that should occur when the shell loses

contact with the mold and bends towards the liquid.  Including this coupled phenomenon

would increase surface temperature and lead to even more bending toward the liquid than

predicted here.

The model ignores the curvature of the meniscus and further assumes zero heat flow

above the meniscus.  It also ignores nonuniform dissipation of superheat due to flow in the

liquid pool. This means that meniscus solidification cannot be modeled.  Including this effect

would presumably allow prediction of the shape of subsurface hooks and oscillation marks.

Relatively slow heat transfer is assumed, representing conditions for an optimal mold

powder for depression-sensitive grades, with good coverage and lubrication in the meniscus

region.  Thus, defects caused by nonuniform heat flow are not simulated.  Nucleation

undercooling effects are also ignored.

The model neglects mold friction.  Sticking of the shell to the mold naturally would

generate tensile stress, which may contribute to cracks.  For example, sticking of the shell to

the mold on either side of a longitudinal depression would concentrate strain at the hottest,
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weakest portion of the shell.  This is another likely mechanism contributing to longitudinal

cracks.

Slag entrainment during the level drop was ignored.  In addition to creating subsurface

inclusion defects, this would slow down resolidification after the level rises.  The results

presented here show very fast resolidification due to the perfect contact assumed between the

liquid and shell after the level rise.

The model ensures no elastic strain in the liquid, so thermal stress and distortion are

generated only by thermal contraction in the solid state.  Strain on the liquid is assumed to

generate fluid flow, as necessary.  For high coherency-temperature materials, such as

considered in this work, this assumption is probably reasonable.  In regions of high solid

fraction in grades with dense columnar mushy zones, it might not be.

4.3  Results

Two simulations were performed.  The first considers thermal stress development in a

section of solidifying shell that is fully constrained from thermal distortion.  Figure 4.6 shows

the temperature profile across the shell at three important times before, during, and after the

sudden 0.6s drop in liquid surface level.  A portion of the shell 20 mm below the meniscus at

the time of the level drop is considered.  Figure 4.7 shows the corresponding axial (z) stress

distributions through the shell.  Calculated nodal values, shown as points in this figure, show

oscillation due to the course mesh, so a smooth curve is drawn through each set.  Because

there is no external stress, such as mold friction, the stress profiles across the shell must

average zero to maintain equilibrium, so the tensile and compression regions must balance.

Finally, note that stress must decrease to zero at the solid / liquid interface, as defined by the

coherency temperature (assumed to be the solidus).  This is required because liquid always

solidifies stress-free.
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The second simulation allows completely free bending of the shell.  Temperature

contours within this shell are shown in Figure 4.8, superimposed on the distorted shape,

which is magnified two times.  The computed axial stresses are negligible, having been

replaced by bending of the shell.  Stresses through the thickness (x direction) are also

negligible.  However, Figure 4.9 shows the maximum transverse (y) stress distribution along

the surface, with the corresponding temperature profile, which occurs at the end of the level

drop.  These results are discussed together in chronological order.
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           Figure 4.8  Distorted shell shape with temperature contours (˚C) (magnified 2X)

A) Normal solidification

     max. x. surface gap

                          -0.06 mm

                           1.1s

B) During mold level drop

     max. x surface gap

                          + 0.45 mm

                          1.7s

C) After level rise

     max. x. surface gap

                          + 1.65 mm

                          1.9s
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A. During solidification

The nature of both the stress distribution and corresponding shape of the solidifying

shell depends on the cooling history, as defined by the heat transfer coefficient, hc, on the

boundary of the shell facing the mold.  Figures 4.6 and 4.8a) show the temperature

distribution during the initial stages of uniform solidification near the meniscus.  Relatively

high temperature gradients exist through the shell thickness, as the shell surface is cooling

rapidly.

When the cooling rate is high after initial solidification, a significant temperature

gradient is also created in the casting direction (z).  Thus, the shell surface cools and

contracts rapidly.  When constrained, this generates a slight z-tensile stress within the

surface layer of the shell, balanced by slight compression beneath it.  Stresses during

solidification are low, on the order of only 2 MPa, due to the rapid creep relaxation and low

elastic modulus at these high temperatures.  The predicted stress levels are consistent with

flow stress measurements of 1 - 5 MPa, made on solidifying shells by Hiebler et al [34].
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When unconstrained, these z-stresses cause the shell to bend slightly in a concave

shape toward the mold walls.  This is illustrated in Figure 4.8a).  The depth of the depression

is very small however, being less than 0.1 mm over the 20 mm length of shell simulated.  The

remaining z-stresses are still tensile at the surface and compressive in the subsurface.

However, their magnitude is almost negligible, due to the rapid stress relaxation at these high

temperatures.

These results contrast with conditions later during solidification, when the surface

cooling rate is slow.  In this case, reported elsewhere [30], the surface temperature becomes

relatively uniform.  Then subsurface cooling and contraction generates subsurface tension,

which induces compression at the surface of the shell.  This tends to reverse the slight

bending of the shell from the mold, presenting a slightly convex shape toward the mold walls

instead.

B. During drop in level

Figure 4.6 shows that temperature throughout the shell tip decreases rapidly during

the short 0.6s level drop, falling about 200 ˚C even 20 mm below the meniscus.  Without the

heat supplied from the molten metal, the mold is able to extract sensible heat from the thin

shell very quickly, even with the relatively small heat transfer coefficient assumed in this

work.

Temperature gradients across the shell thickness disappear also, as temperature

within the thin shell equilibrates.  This means that the shell inside cools more than the

outside.  This is naturally accompanied by a greater contraction of the inside of the shell,

relative to the outside surface.  When constrained, this generates large subsurface tensile

stresses, (6 MPa) seen in Figure 4.7.  Corresponding compression stresses are generated at

the surface.

When unconstrained, this internal contraction causes the shell to bend significantly

toward the liquid, leaving a convex shape facing the mold.  This contraction is calculated to

reach 0.45 mm over the 20 mm length of shell modeled, as shown in Figure 4.8b).  This
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prediction appears roughly consistent with the measured shape of 5 mm high, ultra-low

carbon and peritectic steel droplets quenched on a copper chill [35].  These researchers

observed bending which produced a concave shape toward the mold and gaps of 0.2 mm

over a length of 8 mm.

Equally important to the large distortion of the shell toward the liquid are the stresses

generated.  Stress levels in the shell thickness (x) and casting directions (z) remain very low.

However, Figure 4.9 shows that the calculated y-stress along the shell surface reaches a

maximum of over 40 MPa at the end of the level drop.  This is caused by the large axial

temperature gradient combined with constraint by the rest of the wide face shell.  Naturally,

the average stress is zero, due to the assumption of no friction.  The shell tip is compressive

due to the δ to γ volume expansion.  However, just below the tip, thermal contraction is

relatively large.  This creates high tensile stress across the entire shell over an axial distance

of 6mm for this 20mm level drop.

These high tensile stresses are consistent with viscoplastic deformation at these low

temperatures.  However, in crack-sensitive peritectic grades, this might be sufficient to

generate longitudinal surface cracks.

C. After rise in level

Figures 4.6 and 4.8c) show the rapid increase in temperature, shell thickness, and

distortion which is predicted to occur after the liquid level is suddenly raised back up to the

tip of the shell.  Reestablishing contact with the liquid causes solidification to continue,

generating a “newly solidified” shell on top of the existing solid shell.  The initial rate of the

new solidification is rapid because perfect contact is assumed between the liquid steel and the

existing shell.  This new solidification quickly heats the inside of the existing shell, restoring

the high temperature gradient through the shell typical of normal solidification (Figure 4.8a).

The increased average temperature of the older solidified layer causes it to expand.

However, the newly solidified layer restrains this expansion, if it is of sufficient strength,

which is the case for the ultra-low steel layer studied here.  Moreover, this newly solidified
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layer itself is cooling and contracting.  Unlike initial solidification against the mold, this new

layer is attached to the older shell layer, so is unable to contract free of stress and distortion

during its initial cooling stages.  The result is further bending of the shell towards the liquid.

The increase in tip distortion is significant, reaching 1.65 mm, as illustrated in Figure 4.8c).

4.4 Mechanism of surface depressions and longitudinal cracks

The results presented in the previous section illustrate a detailed mechanism to form

shallow surface depressions and short longitudinal cracks due to a sudden level fluctuation.

First, a severe drop in liquid level at the meniscus causes bending of the shell away from the

mold toward the liquid.  The subsequent rise in liquid level increases this bending.  Finally,

overflowing of the shell tip after the level rise begins creation of a new shell closer to the

mold wall.  This leaves behind a surface depression to travel down the mold.

Deeper and longer level drops obviously should create deeper depressions.  The

location of the depressions should naturally concentrate at locations on the strand perimeter

where level fluctuations are frequent.  Due to the random nature of level fluctuations, these

depressions should occur randomly, with irregular but generally transverse shapes.  They

may also have oxides beneath the outer layer of steel, if the level drop entraps liquid mold

flux.

A severe level drop also causes rapid cooling of the shell tip and high transverse

stresses.  These stresses could generate longitudinal cracks along the shell tip, if the steel

grade is susceptible.  These cracks are predicted to be shallow, longitudinal surface cracks,

less than 1 mm deep and 5-10 mm long, depending on the extent of the level fluctuation.

4.5 Discussion

This work shows how meniscus level fluctuations can directly initiate a particular

type of transverse surface depression and / or short, shallow longitudinal surface cracks, by

generating thermal distortion and stress in the initial shell.  This mechanism complements



127

other mechanisms involving indirect effects of mold level changes on defects, such as

disrupting the uniform feeding of lubricating flux into the mold / shell gap.

These defects initiated by level changes can be aggravated later by other mechanisms.

For example, as each transverse depression moves down the mold, it causes a local reduction

in the heat transfer rate beneath it, especially if there was a lubrication problem leading to a

local air gap.  This produces a drop in mold temperature which is delayed by the casting

speed and distance below the meniscus.  This is consistent with the strong statistical

correlation between mold level fluctuations and mold temperature fluctuations that has been

observed experimentally [36]. Furthermore, solidification at the reduced cooling rate should

produce a courser dendrite arm spacing beneath each depression.  The hotter shell beneath

each depression is weaker, so any additional tensile stress, such as generated by mold

friction due to a lack of lubrication, would be expected to concentrate at the existing

longitudinal surface crack, propagating it longer and deeper, possibly connecting with

subsurface cracks [37].  The tensile stress also encourages macrosegregation of

interdendritic liquid toward the surface, further weakening the shell and enabling crack

growth.

The bending mechanism shown in this work is expected to produce the deepest

depressions in solidifying shell tips that have the highest solid-state contraction and the

highest coherency temperature relative to the surface temperature.  This may explain the

observed effect of steel grade on ripple mark depression susceptibility.  The mechanism has

been modeled here only for ultra-low carbon steel.  Solidifying shell tips of this pure metal

have a high coherency temperature, owing to their narrow mushy zone and lack of

segregation.

It is suspected that steels near 0.1% C should also be prone to the proposed bending

mechanism, for reasons explained by Wolf [10].  First, these peritectic steels experience the

most solid state thermal and phase transformation contraction.  Second, peritectic steels also

exhibit a high coherency temperature, only slightly below the equilibrium solidus
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temperature.  Finally, these steels also experience interdendritic weakness, making them more

prone to cracks than the ultra-low carbon steel.

Steels with a wide mushy zone and segregation, such as high carbon steels, are likely

not susceptible to this depression mechanism.  This is because these steels retain a liquid

fraction at the surface for distances down the mold far greater than the maximum likely

liquid level fluctuation.  With the complete shell above the coherency temperature, bending

strain cannot develop.

The bending mechanism shown here might contribute to the formation of deep

oscillation marks.  At any time during the oscillation cycle, if the surface level dropped to

expose the shell tip, then the predicted bending of the shell away from the mold would

amplify the depth of that oscillation mark.  This might help to explain why peritectic steel

grades tend, on average, to have deeper oscillation marks [16] than other steel grades.  It also

predicts that deep oscillation marks are more likely at positions around the mold perimeter

where level fluctuations are most frequent.

The bending mechanism shown here is not expected to explain the shape of

subsurface “hooks”, caused by meniscus freezing.  These hooks have more curvature than

the gradual depressions calculated in this work because they take their shape from the

original curved liquid meniscus.  Meniscus shape is controlled by surface tension balanced

with gravity, dynamic forces in the liquid and pressure in the flux channel, which were not

modeled in the present work.

The obvious practical implication of this work is that severe, sudden drops in

meniscus level are detrimental to surface quality, even with an optimal flux practice, adequate

lubrication, and otherwise uniform conditions.  Thus, measures should be taken to control

meniscus level in the mold to avoid these fluctuations.  This involves careful choice of nozzle

geometry, argon injection practice, and other casting conditions affecting liquid steel flow

near the meniscus.
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4.6 Conclusions

Two-dimensional, transient finite-element model simulations have shown how a

sudden drop in liquid level affects temperature gradients, thermal distortion, and stress

distribution in the solidifying steel shell near the meniscus.

1) These results illustrate an important mechanism assisting the formation of surface

depressions and longitudinal cracks at the meniscus.

2)  A severe, sudden level drop induces significant thermal distortion of the shell towards to

liquid.  The subsequent rise in liquid level causes the shell to bend even further inward.  Shell

distortion greater than 1 mm is predicted for a 0.6s level fluctuation of 20 mm.  Subsequent

overflow of the bent shell would create a transverse surface depression.

3)  Large, rapid level drops induce large axial temperature gradients, which create high

transverse tensile stresses in the shell, even in the absence of mold friction.  This may be a

cause of short, shallow, longitudinal surface cracks.

4)  Ultra-low carbon steels and peritectic steels are expected to be particularly prone to this

mechanism, owing to their high coherency temperature, which leads to strong initial shells that

can resist flattening by ferrostatic pressure.

This mechanism emphasizes the vital importance of controlling mold level in order to avoid

surface depressions, longitudinal cracks, and other defects.
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Chapter 5 

Summary and Conclusions 

Based on this investigation, several conclusions can be made: 

1. Fixed-grid methods present special numerical difficulties which require careful 

consideration: 

a) liquid can be handled using one of several different methods. 

b) accuracy in the undiscretized direction can be improved by choosing the appropriate 

condition.  Generalized plane strain is best solved with a direct method using a variable 

band-width solution algorithm.  

2. A benchmark test problem for thermal-mechanical analysis of solidification with a 

known analytical solution has been developed, using a highly non-linear constitutive 

equation to create a severe numerical challenge.  This test problem is ideal to compare 

finite element models for solving mechanical problems with solidification. 

3. Decreasing time step size greatly increases accuracy.  Accuracy within 3%  is possible 

on a mesh with 17 elements across the solid shell. Refining mesh size also improves 

accuracy, but only if the time step size is sufficiently small.  An optimum mesh size likely 

exists for each time step size.  Accuracy within 0.1% is possible with 1000 time steps and 

170 elements across the solid shell. 

4. The alternating implicit-explicit scheme is stable and cheap compared with the forward 

Euler scheme and the backward Euler scheme.  The implicit backward Euler scheme with 

proper constitutive algorithms takes 7 times of CPU time of this scheme while the explicit 

forward Euler scheme suffered the stability problem.  
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5. The implicit backward Euler scheme with the successive substitution method and non-

iterative forward gradient method offer no or just less  advantages compared with the 

explicit forward Euler scheme.  The successive substitution method has a convergence 

problem while the  forward gradient method lost the accuracy with relative large step size. 

6. The bounded Newton-Raphson method is more efficient although both types of 

Newton-Raphson's methods performed very well. 

7. The Nemat-Nasser's prediction method worked very well some problems and failed to 

the others. 

8. A numerical efficient transient thermal-mechanical  finite-element model has been 

developed to simulate temperature, shape and stress development in the steel shell, during 

the initial stages of solidification in the mold.  This model can be applied to investigate 

the influences of processes parameters on the solidifying shell behavior and to understand 

the mechanisms of various defects-generating. 

9. A severe, sudden level drop induces significant thermal distortion of the shell towards 

to liquid.  The subsequent rise in liquid level causes the shell to bend even further inward.  

Shell distortion greater than 1 mm is predicted for a 0.6s level fluctuation of 20 mm.  

Subsequent overflow of the bent shell would create a transverse surface depression. 

10. Large, rapid level drops induce large axial temperature gradients, which create high 

transverse tensile stresses in the shell, even in the absence of mold friction.  This may be a 

cause of short, shallow, longitudinal surface cracks.  

11.  Ultra-low carbon steels and peritectic steels are expected to be particularly prone to 

this mechanism, owing to their high coherency temperature, which leads to strong initial 

shells that can resist flattening by ferrostatic pressure.  



APPENDIX  AConstant-Gradient Triangles Element  in  Chapter 4 

 For constant-gradient triangles the temperature variation across the element is 

defined by a linear equation as given by 

 T = a0 + a1x + a2y . (A1)   

As the name suggests, this  implies a constant temperature gradient or heat flux across the 

element.    The temperature at any point in the element is given as  

 T(x,y) = ∑
i=1

3
 Ni(x,y) Ti . (A2) 

The shape functions are given by the area coordinates as shown in Figure A.1 and are 

defined as: 

 [N] = [  
A1
A    

A2
A   

A3
A     ]           (A.3) 

where A1, A2, A3 are the are of the triangles marked on the Figure A.1 
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 Figure A.1  Shape functions for constant gradient triangular elements  

The nodal temperatures are defined as   

  {T}  = { T1   T2   T3}T .      (A4) 

The temperature gradient across the element can then be expressed as  
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The [B] matrix for this element can be written in terms of the nodal coordinates, as 

 

 [B] = 
1

2A 
⎣
⎢
⎡

⎦
⎥
⎤bi bj bk

ci cj ck
   ,              (A.6) 

where 

 bi  = xj  - xk 

 ci  =  yk -  yj                 (A.7) 

Finally, for these elements the conductance and capacitance matrices can be directly 

evaluated using the following equation without using numerical integration  

 [K] = Kij =  
t • k(T)

4A  ( bibj+ ci cj)  ,             (A.8) 

where k(T) is the temperature dependent thermal conductivity 

 [C] = Cij = 
t • A
12   

∂H(T)
∂T  (1 + δij)  ,              (A.9) 

where H(T) is the temperature dependent enthalpy function and the  
∂H(T)
∂T    term is defined 

in Eq. 4.3.  The thermal force vector {Q} was formed as : 

  {Q}  =  ⌡⌠ NT q" dL  = 
q"Lij

2    ,             (A.10) 

where q" is the heat flux and Lij is the length of the boundary between node i,j.  The 

material properties are evaluated at the centroid of the element where the temperature is 

given  

  Te  = = 
1
3 ( T1 + T2 + T3) .             (A.11) 
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